From stability of Langevin diffusion to convergence of proximal MCMC for non-log-concave sampling
- URL: http://arxiv.org/abs/2505.14177v1
- Date: Tue, 20 May 2025 10:29:57 GMT
- Title: From stability of Langevin diffusion to convergence of proximal MCMC for non-log-concave sampling
- Authors: Marien Renaud, Valentin De Bortoli, Arthur Leclaire, Nicolas Papadakis,
- Abstract summary: We consider the problem of sampling discrete distributions from non-backwards with Untime Langevin (ULA)<n>We prove the robustness of ULA to the assumption that the potential is convex at infinity.
- Score: 13.715563516345789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of sampling distributions stemming from non-convex potentials with Unadjusted Langevin Algorithm (ULA). We prove the stability of the discrete-time ULA to drift approximations under the assumption that the potential is strongly convex at infinity. In many context, e.g. imaging inverse problems, potentials are non-convex and non-smooth. Proximal Stochastic Gradient Langevin Algorithm (PSGLA) is a popular algorithm to handle such potentials. It combines the forward-backward optimization algorithm with a ULA step. Our main stability result combined with properties of the Moreau envelope allows us to derive the first proof of convergence of the PSGLA for non-convex potentials. We empirically validate our methodology on synthetic data and in the context of imaging inverse problems. In particular, we observe that PSGLA exhibits faster convergence rates than Stochastic Gradient Langevin Algorithm for posterior sampling while preserving its restoration properties.
Related papers
- Hessian stability and convergence rates for entropic and Sinkhorn potentials via semiconcavity [4.604003661048267]
This is the first work addressing this second-order quantitative stability estimate in general unbounded settings.<n>We deduce exponential convergence rates for gradient and Hessian of Sinkhorns along Sinkhorn's algorithm.
arXiv Detail & Related papers (2025-04-15T12:34:09Z) - The Performance Of The Unadjusted Langevin Algorithm Without Smoothness Assumptions [0.0]
We propose a Langevin-based algorithm that does not rely on popular but computationally challenging techniques.<n>We show that the performance of samplers like ULA does not necessarily degenerate arbitrarily with low regularity.
arXiv Detail & Related papers (2025-02-05T18:55:54Z) - Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems [56.86067111855056]
We consider clipped optimization problems with heavy-tailed noise with structured density.
We show that it is possible to get faster rates of convergence than $mathcalO(K-(alpha - 1)/alpha)$, when the gradients have finite moments of order.
We prove that the resulting estimates have negligible bias and controllable variance.
arXiv Detail & Related papers (2023-11-07T17:39:17Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
We consider the problem of sampling from a distribution governed by a potential function.
This work proposes an explicit score based MCMC method that is deterministic, resulting in a deterministic evolution for particles.
arXiv Detail & Related papers (2023-08-28T23:51:33Z) - Non-asymptotic analysis of Langevin-type Monte Carlo algorithms [0.0]
We study Langevin-type algorithms for sampling from Gibbs distributions with finite moduli of continuity not necessarily convergent to zero.
We show that the Langevin Monte Carlo algorithm can approximate Gibbs distributions with arbitrary accuracy if the potentials are dissipative and their gradients are uniformly continuous.
arXiv Detail & Related papers (2023-03-22T09:16:17Z) - Utilising the CLT Structure in Stochastic Gradient based Sampling :
Improved Analysis and Faster Algorithms [14.174806471635403]
We consider approximations of sampling algorithms, such as Gradient Langevin Dynamics (SGLD) and the Random Batch Method (RBM) for Interacting Particle Dynamcs (IPD)
We observe that the noise introduced by the approximation is nearly Gaussian due to the Central Limit Theorem (CLT) while the driving Brownian motion is exactly Gaussian.
We harness this structure to absorb the approximation error inside the diffusion process, and obtain improved convergence guarantees for these algorithms.
arXiv Detail & Related papers (2022-06-08T10:17:40Z) - Convex Analysis of the Mean Field Langevin Dynamics [49.66486092259375]
convergence rate analysis of the mean field Langevin dynamics is presented.
$p_q$ associated with the dynamics allows us to develop a convergence theory parallel to classical results in convex optimization.
arXiv Detail & Related papers (2022-01-25T17:13:56Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
We provide a new convergence analysis of gradient Langevin dynamics (SGLD) for sampling from a class of distributions that can be non-log-concave.
At the core of our approach is a novel conductance analysis of SGLD using an auxiliary time-reversible Markov Chain.
arXiv Detail & Related papers (2020-10-19T15:23:18Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
We study the problem of solving strongly convex and smooth unconstrained optimization problems using first-order algorithms.
We devise a novel, referred to as Recursive One-Over-T SGD, based on an easily implementable, averaging of past gradients.
We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an sense.
arXiv Detail & Related papers (2020-08-28T14:46:56Z) - On the Convergence Rate of Projected Gradient Descent for a
Back-Projection based Objective [58.33065918353532]
We consider a back-projection based fidelity term as an alternative to the common least squares (LS)
We show that using the BP term, rather than the LS term, requires fewer iterations of optimization algorithms.
arXiv Detail & Related papers (2020-05-03T00:58:23Z) - Non-Convex Optimization via Non-Reversible Stochastic Gradient Langevin
Dynamics [27.097121544378528]
Gradient Langevin Dynamics (SGLD) is a powerful algorithm for optimizing a non- objective gradient.
NSGLD is based on discretization of the non-reversible diffusion.
arXiv Detail & Related papers (2020-04-06T17:11:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.