A Mosaic of Perspectives: Understanding Ownership in Software Engineering
- URL: http://arxiv.org/abs/2505.14220v2
- Date: Mon, 02 Jun 2025 19:35:10 GMT
- Title: A Mosaic of Perspectives: Understanding Ownership in Software Engineering
- Authors: Tomi Suomi, Petri Ihantola, Tommi Mikkonen, Niko Mäkitalo,
- Abstract summary: This paper examines the existing literature on ownership in software engineering and in psychology.<n>It argues that a more comprehensive view of ownership in software engineering has a great potential in improving software team's work.
- Score: 3.389874466792194
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Agile software development relies on self-organized teams, underlining the importance of individual responsibility. How developers take responsibility and build ownership are influenced by external factors such as architecture and development methods. This paper examines the existing literature on ownership in software engineering and in psychology, and argues that a more comprehensive view of ownership in software engineering has a great potential in improving software team's work. Initial positions on the issue are offered for discussion and to lay foundations for further research.
Related papers
- Psychological safety in software workplaces: A systematic literature review [0.8331356470329141]
Psychological safety (PS) is an important factor influencing team well-being and performance.<n>Despite its acknowledged significance, research on PS within the field of software engineering remains limited.
arXiv Detail & Related papers (2025-08-05T12:19:17Z) - Vibe Coding vs. Agentic Coding: Fundamentals and Practical Implications of Agentic AI [0.36868085124383626]
Review presents a comprehensive analysis of two emerging paradigms in AI-assisted software development: vibe coding and agentic coding.<n> Vibe coding emphasizes intuitive, human-in-the-loop interaction through prompt-based, conversational interaction.<n>Agentic coding enables autonomous software development through goal-driven agents capable of planning, executing, testing, and iterating tasks with minimal human intervention.
arXiv Detail & Related papers (2025-05-26T03:00:21Z) - The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources [100.23208165760114]
Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications.<n>To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet.
arXiv Detail & Related papers (2024-06-24T15:55:49Z) - In-IDE Human-AI Experience in the Era of Large Language Models; A
Literature Review [2.6703221234079946]
The study of in-IDE Human-AI Experience is critical in understanding how these AI tools are transforming the software development process.
We conducted a literature review to study the current state of in-IDE Human-AI Experience research.
arXiv Detail & Related papers (2024-01-19T14:55:51Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
The present study aims to explore the familiarity of managers, leaders, and developers with software visualization tools.
This approach incorporated quantitative and qualitative analyses of data collected from practitioners using questionnaires and semi-structured interviews.
arXiv Detail & Related papers (2024-01-17T21:30:45Z) - Towards Trustworthy AI Software Development Assistance [0.599251270168187]
Current software development assistants tend to be unreliable, often producing incorrect, unsafe, or low-quality code.
We seek to resolve these issues by introducing a holistic architecture for constructing, training, and using trustworthy AI software development assistants.
arXiv Detail & Related papers (2023-12-14T16:59:49Z) - Intelligent Software Tooling for Improving Software Development [3.1763879286782966]
Deep Learning (DL) has shown huge advancements in automation across many domains, including Software Development processes.
One of the main reasons behind this success is the availability of large datasets such as open-source code available through GitHub or image datasets of mobile Graphical User Interfaces (GUIs) with RICO and ReDRAW to be trained on.
arXiv Detail & Related papers (2023-10-17T01:29:07Z) - ChatDev: Communicative Agents for Software Development [84.90400377131962]
ChatDev is a chat-powered software development framework in which specialized agents are guided in what to communicate.
These agents actively contribute to the design, coding, and testing phases through unified language-based communication.
arXiv Detail & Related papers (2023-07-16T02:11:34Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
Large-scale software development has become a highly collaborative endeavour.
This chapter explores the ecosystems of development bots and GitHub Actions.
It provides an extensive survey of the state-of-the-art in this domain.
arXiv Detail & Related papers (2023-05-08T15:24:23Z) - AI Explainability 360: Impact and Design [120.95633114160688]
In 2019, we created AI Explainability 360 (Arya et al. 2020), an open source software toolkit featuring ten diverse and state-of-the-art explainability methods.
This paper examines the impact of the toolkit with several case studies, statistics, and community feedback.
The paper also describes the flexible design of the toolkit, examples of its use, and the significant educational material and documentation available to its users.
arXiv Detail & Related papers (2021-09-24T19:17:09Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
We argue that ethical considerations need to be embedded into the (agile) software development process.
We put emphasis on the possibility to implement ethical deliberations in already existing and well established agile software development processes.
arXiv Detail & Related papers (2021-07-15T11:14:03Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.