Dual Decomposition of Weights and Singular Value Low Rank Adaptation
- URL: http://arxiv.org/abs/2505.14367v2
- Date: Wed, 21 May 2025 04:18:20 GMT
- Title: Dual Decomposition of Weights and Singular Value Low Rank Adaptation
- Authors: Jialong Han, Si Zhang, Ke Zhang,
- Abstract summary: We propose DuDe, a novel approach that decomposes weight matrices into magnitude and direction components.<n>Our evaluation demonstrates DuDe's superior performance and robustness, achieving up to 48.35% accuracy on MMLU and 62.53% ($pm$ 1.59) accuracy on GSM8K.
- Score: 9.048461365342204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parameter-Efficient Fine-Tuning (PEFT) has emerged as a critical paradigm for adapting Large Language Models (LLMs) to downstream tasks, among which Low-rank Adaptation (LoRA) represents one of the most widely adopted methodologies. However, existing LoRA-based approaches exhibit two fundamental limitations: unstable training dynamics and inefficient knowledge transfer from pre-trained models, both stemming from random initialization of adapter parameters. To overcome these challenges, we propose DuDe, a novel approach that decomposes weight matrices into magnitude and direction components, employing Singular Value Decomposition (SVD) for principled initialization. Our comprehensive evaluation demonstrates DuDe's superior performance and robustness, achieving up to 48.35\% accuracy on MMLU and 62.53\% ($\pm$ 1.59) accuracy on GSM8K. Our theoretical analysis and empirical validation collectively demonstrate that DuDe's decomposition strategy enhances optimization stability and better preserves pre-trained representations, particularly for domain-specific tasks requiring specialized knowledge. The combination of robust empirical performance and rigorous theoretical foundations establishes DuDe as a significant contribution to PEFT methodologies for LLMs.
Related papers
- Reinforcement Fine-Tuning Naturally Mitigates Forgetting in Continual Post-Training [23.99424961055015]
This paper presents a comparative analysis of two core post-training paradigms: supervised fine-tuning (SFT) and reinforcement fine-tuning (RFT)<n>Our experiments are conducted on a benchmark comprising seven diverse multimodal tasks.
arXiv Detail & Related papers (2025-07-07T18:17:06Z) - Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs [51.21041884010009]
Ring-lite is a Mixture-of-Experts (MoE)-based large language model optimized via reinforcement learning (RL)<n>Our approach matches the performance of state-of-the-art (SOTA) small-scale reasoning models on challenging benchmarks.
arXiv Detail & Related papers (2025-06-17T17:12:34Z) - Taming Polysemanticity in LLMs: Provable Feature Recovery via Sparse Autoencoders [50.52694757593443]
Existing SAE training algorithms often lack rigorous mathematical guarantees and suffer from practical limitations.<n>We first propose a novel statistical framework for the feature recovery problem, which includes a new notion of feature identifiability.<n>We introduce a new SAE training algorithm based on bias adaptation'', a technique that adaptively adjusts neural network bias parameters to ensure appropriate activation sparsity.
arXiv Detail & Related papers (2025-06-16T20:58:05Z) - Implicit Reward as the Bridge: A Unified View of SFT and DPO Connections [65.36449542323277]
We present a unified theoretical framework bridgingSupervised Fine-Tuning (SFT) and preference learning in Large Language Model (LLM) post-training.<n>We propose a simple yet effective learning rate reduction approach that yields significant performance improvements.
arXiv Detail & Related papers (2025-06-15T05:42:29Z) - Weight Spectra Induced Efficient Model Adaptation [54.8615621415845]
Fine-tuning large-scale foundation models incurs prohibitive computational costs.<n>We show that fine-tuning predominantly amplifies the top singular values while leaving the remainder largely intact.<n>We propose a novel method that leverages learnable rescaling of top singular directions.
arXiv Detail & Related papers (2025-05-29T05:03:29Z) - MoL for LLMs: Dual-Loss Optimization to Enhance Domain Expertise While Preserving General Capabilities [0.0]
We propose a novel framework, Mixture of Losses (MoL), which decouples optimization objectives for domain-specific and general corpora.<n>Specifically, cross-entropy (CE) loss is applied to domain-corpus to ensure knowledge acquisition, while Kullback-Leibler (KL) divergence aligns general-corpus training with the base model's foundational capabilities.
arXiv Detail & Related papers (2025-05-17T15:12:47Z) - How Difficulty-Aware Staged Reinforcement Learning Enhances LLMs' Reasoning Capabilities: A Preliminary Experimental Study [16.441081996257576]
This paper presents a rigorous experimental investigation into how difficulty-aware staged reinforcement learning strategies can substantially improve reasoning performance.<n>We show that strategically selecting training data according to well-defined difficulty levels markedly enhances RL optimization.<n>We will open-source our datasets on GitHub and Hugging Face.
arXiv Detail & Related papers (2025-04-01T14:18:38Z) - The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models [69.798277882245]
We introduce Unsupervised Prefix Fine-Tuning (UPFT) to enhance large language models' reasoning efficiency.<n>UPFT removes the need for labeled data or exhaustive sampling.<n> Experiments show that UPFT matches the performance of supervised methods.
arXiv Detail & Related papers (2025-03-04T18:56:03Z) - DiffoRA: Enabling Parameter-Efficient LLM Fine-Tuning via Differential Low-Rank Matrix Adaptation [32.369133126167085]
We propose a new PEFT scheme called DiffoRA, which is theoretically grounded and enables module-wise adoption of LoRA.<n>At the core of our DiffoRA lies a Differential Adaptation Matrix (DAM) to determine which module is the most suitable and essential for fine-tuning.<n>Our approach achieves the best model accuracy over all the state-of-the-art baselines across various benchmarks.
arXiv Detail & Related papers (2025-02-13T02:41:34Z) - Reward-Guided Speculative Decoding for Efficient LLM Reasoning [80.55186052123196]
We introduce Reward-Guided Speculative Decoding (RSD), a novel framework aimed at improving the efficiency of inference in large language models (LLMs)<n>RSD incorporates a controlled bias to prioritize high-reward outputs, in contrast to existing speculative decoding methods that enforce strict unbiasedness.<n>RSD delivers significant efficiency gains against decoding with the target model only, while achieving significant better accuracy than parallel decoding method on average.
arXiv Detail & Related papers (2025-01-31T17:19:57Z) - Preference-Based Multi-Agent Reinforcement Learning: Data Coverage and Algorithmic Techniques [65.55451717632317]
We study Preference-Based Multi-Agent Reinforcement Learning (PbMARL)<n>We identify the Nash equilibrium from a preference-only offline dataset in general-sum games.<n>Our findings underscore the multifaceted approach required for PbMARL.
arXiv Detail & Related papers (2024-09-01T13:14:41Z) - Learn to Preserve and Diversify: Parameter-Efficient Group with Orthogonal Regularization for Domain Generalization [28.977757627384165]
Domain Domain (DG) aims to avoid the performance degradation of the model when the distribution shift between the limited training data and unseen test data occurs.
Recently, foundation models with enormous parameters have been pre-trained with huge datasets, demonstrating strong generalization ability.
Our framework achieves SOTA performance on five DG benchmarks, while only requiring training a small number of parameters without adding additional testing cost.
arXiv Detail & Related papers (2024-07-21T07:50:49Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.