DiffoRA: Enabling Parameter-Efficient LLM Fine-Tuning via Differential Low-Rank Matrix Adaptation
- URL: http://arxiv.org/abs/2502.08905v1
- Date: Thu, 13 Feb 2025 02:41:34 GMT
- Title: DiffoRA: Enabling Parameter-Efficient LLM Fine-Tuning via Differential Low-Rank Matrix Adaptation
- Authors: Tangyu Jiang, Haodi Wang, Chun Yuan,
- Abstract summary: We propose a new PEFT scheme called DiffoRA, which is theoretically grounded and enables module-wise adoption of LoRA.
At the core of our DiffoRA lies a Differential Adaptation Matrix (DAM) to determine which module is the most suitable and essential for fine-tuning.
Our approach achieves the best model accuracy over all the state-of-the-art baselines across various benchmarks.
- Score: 32.369133126167085
- License:
- Abstract: The Parameter-Efficient Fine-Tuning (PEFT) methods have been extensively researched for large language models in the downstream tasks. Among all the existing approaches, the Low-Rank Adaptation (LoRA) has gained popularity for its streamlined design by incorporating low-rank matrices into existing pre-trained models. Though effective, LoRA allocates every module an identical low-rank matrix, which ignores the varying properties and contributions across different components. Moreover, the existing adaptive LoRA solutions rely highly on intuitive importance scoring indicators to adjust the interior rank of the decomposition matrices. In this paper, we propose a new PEFT scheme called DiffoRA, which is theoretically grounded and enables module-wise adoption of LoRA. At the core of our DiffoRA lies a Differential Adaptation Matrix (DAM) to determine which module is the most suitable and essential for fine-tuning. We explain how the designed matrix impacts the convergence rate and generalization capability of a pre-trained model. Furthermore, we construct the DAM via continuous relaxation and discretization with weight-sharing optimizations. We fully implement our DiffoRA and design comprehensive experiments to evaluate its performance. The experimental results demonstrate that our approach achieves the best model accuracy over all the state-of-the-art baselines across various benchmarks.
Related papers
- BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) has been widely adopted as one of the most effective parameter-efficient fine-tuning methods.
We propose BeamLoRA, which conceptualizes each LoRA module as a beam where each rank naturally corresponds to a potential sub-solution.
arXiv Detail & Related papers (2025-02-19T10:33:22Z) - Robust Federated Finetuning of LLMs via Alternating Optimization of LoRA [14.789886179102425]
BERT-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation (LoRA) optimize federated training by reducing computational and communication costs.
We propose RoLoRA, a federated framework using alternating optimization to fine-tune LoRA adapters.
arXiv Detail & Related papers (2025-02-03T19:02:00Z) - GeLoRA: Geometric Adaptive Ranks For Efficient LoRA Fine-tuning [2.7446241148152253]
Fine-tuning large language models (LLMs) is computationally intensive because it requires updating all parameters.
Low-Rank Adaptation (LoRA) improves efficiency by modifying only a subset of weights but introduces a trade-off between expressivity and computational cost.
We propose Geometric Low-Rank Adaptation (GeLoRA), a novel framework that computes the intrinsic dimensionality of hidden state representations to adaptively select LoRA ranks.
arXiv Detail & Related papers (2024-12-12T13:04:54Z) - Unlocking Tuning-Free Few-Shot Adaptability in Visual Foundation Models by Recycling Pre-Tuned LoRAs [76.40876036912537]
Large Language Models (LLMs) demonstrate strong few-shot adaptability without requiring fine-tuning.
Current Visual Foundation Models (VFMs) require explicit fine-tuning with sufficient tuning data.
We propose a framework, LoRA Recycle, that distills a meta-LoRA from diverse pre-tuned LoRAs with a meta-learning objective.
arXiv Detail & Related papers (2024-12-03T07:25:30Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
We introduce PRILoRA, which linearly allocates a different rank for each layer, in an increasing manner, and performs pruning throughout the training process.
We validate the effectiveness of PRILoRA through extensive experiments on eight GLUE benchmarks, setting a new state of the art.
arXiv Detail & Related papers (2024-01-20T20:25:17Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z) - One-for-All: Generalized LoRA for Parameter-Efficient Fine-tuning [34.109808214968176]
Generalized LoRA (GLoRA) is an advanced approach for universal parameter-efficient fine-tuning tasks.
It employs a generalized prompt module to optimize pre-trained model weights and adjust intermediate activations.
GLoRA exhibits strong transfer learning, few-shot learning and domain generalization abilities.
arXiv Detail & Related papers (2023-06-13T17:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.