Beyond the First Error: Process Reward Models for Reflective Mathematical Reasoning
- URL: http://arxiv.org/abs/2505.14391v1
- Date: Tue, 20 May 2025 14:12:05 GMT
- Title: Beyond the First Error: Process Reward Models for Reflective Mathematical Reasoning
- Authors: Zhaohui Yang, Chenghua He, Xiaowen Shi, Linjing Li, Qiyue Yin, Shihong Deng, Daxin Jiang,
- Abstract summary: We propose a novel data annotation method for PRMs specifically designed to score the long CoT reasoning process.<n>We introduce the concepts of Error Propagation and Error Cessation, enhancing PRMs' ability to identify both effective self-correction behaviors and reasoning based on erroneous steps.<n>Our PRM achieves superior performance across various metrics, including search guidance, BoN, and F1 scores.
- Score: 49.21525229904197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many studies focus on data annotation techniques for training effective PRMs. However, current methods encounter a significant issue when applied to long CoT reasoning processes: they tend to focus solely on the first incorrect step and all preceding steps, assuming that all subsequent steps are incorrect. These methods overlook the unique self-correction and reflection mechanisms inherent in long CoT, where correct reasoning steps may still occur after initial reasoning mistakes. To address this issue, we propose a novel data annotation method for PRMs specifically designed to score the long CoT reasoning process. Given that under the reflection pattern, correct and incorrect steps often alternate, we introduce the concepts of Error Propagation and Error Cessation, enhancing PRMs' ability to identify both effective self-correction behaviors and reasoning based on erroneous steps. Leveraging an LLM-based judger for annotation, we collect 1.7 million data samples to train a 7B PRM and evaluate it at both solution and step levels. Experimental results demonstrate that compared to existing open-source PRMs and PRMs trained on open-source datasets, our PRM achieves superior performance across various metrics, including search guidance, BoN, and F1 scores. Compared to widely used MC-based annotation methods, our annotation approach not only achieves higher data efficiency but also delivers superior performance. Detailed analysis is also conducted to demonstrate the stability and generalizability of our method.
Related papers
- Uncertainty-Based Methods for Automated Process Reward Data Construction and Output Aggregation in Mathematical Reasoning [10.227089771963943]
We propose an uncertainty-driven framework for automated process reward data construction.<n>We introduce two generic uncertainty-aware output aggregation methods: Hybrid Majority Reward Vote and weighted Reward Frequency Vote.<n>Experiments on ProcessBench, MATH, and GSMPlus show the effectiveness and efficiency of the proposed PRM data construction framework.
arXiv Detail & Related papers (2025-08-03T14:14:13Z) - R-PRM: Reasoning-Driven Process Reward Modeling [53.06844294668382]
Process Reward Models (PRMs) have emerged as a promising solution by evaluating each reasoning step.<n>Existing PRMs typically output evaluation scores directly, limiting both learning efficiency and evaluation accuracy.<n>We propose Reasoning-Driven Process Reward Modeling (R-PRM)<n>R-PRM generates seed data from limited annotations, effectively bootstrapping our model's reasoning capabilities.
arXiv Detail & Related papers (2025-03-27T09:23:08Z) - The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models [69.798277882245]
We introduce Unsupervised Prefix Fine-Tuning (UPFT) to enhance large language models' reasoning efficiency.<n>UPFT removes the need for labeled data or exhaustive sampling.<n> Experiments show that UPFT matches the performance of supervised methods.
arXiv Detail & Related papers (2025-03-04T18:56:03Z) - AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence [29.551802573731305]
We propose AdaptiveStep, a method that divides reasoning steps based on the model's confidence in predicting the next word.<n>We demonstrate its effectiveness through experiments with AdaptiveStep-trained PRMs in mathematical reasoning and code generation tasks.
arXiv Detail & Related papers (2025-02-19T18:35:55Z) - Coarse-to-Fine Process Reward Modeling for Mathematical Reasoning [11.15613673478208]
The Process Reward Model (PRM) plays a crucial role in mathematical reasoning tasks, requiring high-quality supervised process data.<n>We observe that reasoning steps generated by Large Language Models (LLMs) often fail to exhibit strictly incremental information, leading to redundancy.<n>We propose CFPRM, a simple yet effective coarse-to-fine strategy for detecting redundant steps.
arXiv Detail & Related papers (2025-01-23T12:44:45Z) - ReARTeR: Retrieval-Augmented Reasoning with Trustworthy Process Rewarding [25.329712997545794]
We propose Retrieval-Augmented Reasoning through Trustworthy Process Rewarding (ReARTeR)<n>ReARTeR enhances RAG systems' reasoning capabilities through post-training and test-time scaling.<n> Experimental results on multi-step reasoning benchmarks demonstrate significant improvements.
arXiv Detail & Related papers (2025-01-14T05:56:26Z) - The Lessons of Developing Process Reward Models in Mathematical Reasoning [62.165534879284735]
Process Reward Models (PRMs) aim to identify and mitigate intermediate errors in the reasoning processes.<n>We develop a consensus filtering mechanism that effectively integrates Monte Carlo (MC) estimation with Large Language Models (LLMs)<n>We release a new state-of-the-art PRM that outperforms existing open-source alternatives.
arXiv Detail & Related papers (2025-01-13T13:10:16Z) - Free Process Rewards without Process Labels [55.14044050782222]
We show that an textitimplicit PRM can be obtained at no additional cost, by simply training an ORM on the cheaper response-level labels.<n>We show that our implicit PRM, when instantiated with the cross-entropy (CE) loss, is more data-efficient and can keep improving generation models even when trained with only one response per instruction.
arXiv Detail & Related papers (2024-12-02T21:20:02Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM) furnishes LLMs with step-by-step feedback during the training phase.
We propose a greedy search algorithm that employs the step-level feedback from PRM to optimize the reasoning pathways explored by LLMs.
To explore the versatility of our approach, we develop a novel method to automatically generate step-level reward dataset for coding tasks and observed similar improved performance in the code generation tasks.
arXiv Detail & Related papers (2023-10-16T05:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.