Uncertainty-Based Methods for Automated Process Reward Data Construction and Output Aggregation in Mathematical Reasoning
- URL: http://arxiv.org/abs/2508.01773v1
- Date: Sun, 03 Aug 2025 14:14:13 GMT
- Title: Uncertainty-Based Methods for Automated Process Reward Data Construction and Output Aggregation in Mathematical Reasoning
- Authors: Jiuzhou Han, Wray Buntine, Ehsan Shareghi,
- Abstract summary: We propose an uncertainty-driven framework for automated process reward data construction.<n>We introduce two generic uncertainty-aware output aggregation methods: Hybrid Majority Reward Vote and weighted Reward Frequency Vote.<n>Experiments on ProcessBench, MATH, and GSMPlus show the effectiveness and efficiency of the proposed PRM data construction framework.
- Score: 10.227089771963943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models have demonstrated remarkable capabilities in complex mathematical reasoning tasks, but they inevitably generate errors throughout multi-step solutions. Process-level Reward Models (PRMs) have shown great promise by providing supervision and evaluation at each intermediate step, thereby effectively improving the models' reasoning abilities. However, training effective PRMs requires high-quality process reward data, yet existing methods for constructing such data are often labour-intensive or inefficient. In this paper, we propose an uncertainty-driven framework for automated process reward data construction, encompassing both data generation and annotation processes for PRMs. Additionally, we identify the limitations of both majority vote and PRMs, and introduce two generic uncertainty-aware output aggregation methods: Hybrid Majority Reward Vote and Weighted Reward Frequency Vote, which combine the strengths of majority vote with PRMs. Extensive experiments on ProcessBench, MATH, and GSMPlus show the effectiveness and efficiency of the proposed PRM data construction framework, and demonstrate that the two output aggregation methods further improve the mathematical reasoning abilities across diverse PRMs. The code and data will be publicly available at https://github.com/Jiuzhouh/UnPRM.
Related papers
- GM-PRM: A Generative Multimodal Process Reward Model for Multimodal Mathematical Reasoning [12.724393910603299]
We introduce the Generative Multimodal Process Reward Model (GM-PRM)<n>Instead of a simple scalar score, GM-PRM provides a fine-grained, interpretable analysis of each reasoning step.<n>We show that GM-PRM achieves state-of-the-art results on multiple multimodal math benchmarks.
arXiv Detail & Related papers (2025-08-06T05:10:29Z) - Discriminative Policy Optimization for Token-Level Reward Models [55.98642069903191]
Process reward models (PRMs) provide more nuanced supervision compared to outcome reward models (ORMs)<n>Q-RM explicitly learns token-level Q-functions from preference data without relying on fine-grained annotations.<n>Reinforcement learning with Q-RM significantly enhances training efficiency, achieving convergence 12 times faster than ORM on GSM8K and 11 times faster than step-level PRM on MATH.
arXiv Detail & Related papers (2025-05-29T11:40:34Z) - DreamPRM: Domain-Reweighted Process Reward Model for Multimodal Reasoning [33.574626079343936]
We introduce DreamPRM, a domain-reweighted training framework for multimodal PRMs.<n>In the lower-level optimization, DreamPRM performs fine-tuning on multiple datasets with domain weights.<n>In the upper-level optimization, the PRM is evaluated on a separate meta-learning dataset.
arXiv Detail & Related papers (2025-05-26T17:20:17Z) - Beyond the First Error: Process Reward Models for Reflective Mathematical Reasoning [49.21525229904197]
We propose a novel data annotation method for PRMs specifically designed to score the long CoT reasoning process.<n>We introduce the concepts of Error Propagation and Error Cessation, enhancing PRMs' ability to identify both effective self-correction behaviors and reasoning based on erroneous steps.<n>Our PRM achieves superior performance across various metrics, including search guidance, BoN, and F1 scores.
arXiv Detail & Related papers (2025-05-20T14:12:05Z) - R-PRM: Reasoning-Driven Process Reward Modeling [53.06844294668382]
Process Reward Models (PRMs) have emerged as a promising solution by evaluating each reasoning step.<n>Existing PRMs typically output evaluation scores directly, limiting both learning efficiency and evaluation accuracy.<n>We propose Reasoning-Driven Process Reward Modeling (R-PRM)<n>R-PRM generates seed data from limited annotations, effectively bootstrapping our model's reasoning capabilities.
arXiv Detail & Related papers (2025-03-27T09:23:08Z) - Reinforced Model Merging [53.84354455400038]
We present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks.<n>By utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times.
arXiv Detail & Related papers (2025-03-27T08:52:41Z) - Towards Hierarchical Multi-Step Reward Models for Enhanced Reasoning in Large Language Models [33.547353090281284]
We propose a novel reward model approach called the Hierarchical Reward Model.<n>It evaluates both individual and consecutive reasoning steps at both fine-grained and coarse-grained levels.<n>It excels at assessing multi-step reasoning coherence, especially when flawed steps are later corrected through self-reflection.
arXiv Detail & Related papers (2025-03-16T15:18:40Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning tasks.<n>We present a unified probabilistic framework that formalizes LLM reasoning through a novel graphical model.<n>We introduce the Bootstrapping Reinforced Thinking Process (BRiTE) algorithm, which works in two steps.
arXiv Detail & Related papers (2025-01-31T02:39:07Z) - The Lessons of Developing Process Reward Models in Mathematical Reasoning [62.165534879284735]
Process Reward Models (PRMs) aim to identify and mitigate intermediate errors in the reasoning processes.<n>We develop a consensus filtering mechanism that effectively integrates Monte Carlo (MC) estimation with Large Language Models (LLMs)<n>We release a new state-of-the-art PRM that outperforms existing open-source alternatives.
arXiv Detail & Related papers (2025-01-13T13:10:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.