Log-Augmented Generation: Scaling Test-Time Reasoning with Reusable Computation
- URL: http://arxiv.org/abs/2505.14398v1
- Date: Tue, 20 May 2025 14:14:38 GMT
- Title: Log-Augmented Generation: Scaling Test-Time Reasoning with Reusable Computation
- Authors: Peter Baile Chen, Yi Zhang, Dan Roth, Samuel Madden, Jacob Andreas, Michael Cafarella,
- Abstract summary: Large language models (LLMs) and their agentic counterparts struggle to retain reasoning from previous tasks.<n>We propose a novel framework, log-augmented generation (LAG) that directly reuses prior computation and reasoning from past logs at test time.<n>Our method significantly outperforms standard agentic systems that do not utilize logs.
- Score: 80.69067017594709
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While humans naturally learn and adapt from past experiences, large language models (LLMs) and their agentic counterparts struggle to retain reasoning from previous tasks and apply them in future contexts. To address this limitation, we propose a novel framework, log-augmented generation (LAG) that directly reuses prior computation and reasoning from past logs at test time to enhance model's ability to learn from previous tasks and perform better on new, unseen challenges, all while keeping the system efficient and scalable. Specifically, our system represents task logs using key-value (KV) caches, encoding the full reasoning context of prior tasks while storing KV caches for only a selected subset of tokens. When a new task arises, LAG retrieves the KV values from relevant logs to augment generation. Our approach differs from reflection-based memory mechanisms by directly reusing prior reasoning and computations without requiring additional steps for knowledge extraction or distillation. Our method also goes beyond existing KV caching techniques, which primarily target efficiency gains rather than improving accuracy. Experiments on knowledge- and reasoning-intensive datasets demonstrate that our method significantly outperforms standard agentic systems that do not utilize logs, as well as existing solutions based on reflection and KV cache techniques.
Related papers
- Quantifying Memory Utilization with Effective State-Size [73.52115209375343]
We develop a measure of textitmemory utilization'<n>This metric is tailored to the fundamental class of systems with textitinput-invariant and textitinput-varying linear operators
arXiv Detail & Related papers (2025-04-28T08:12:30Z) - Prior-Free Continual Learning with Unlabeled Data in the Wild [24.14279172551939]
We propose a Prior-Free Continual Learning (PFCL) method to incrementally update a trained model on new tasks.
PFCL learns new tasks without knowing the task identity or any previous data.
Our experiments show that our PFCL method significantly mitigates forgetting in all three learning scenarios.
arXiv Detail & Related papers (2023-10-16T13:59:56Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Task Residual for Tuning Vision-Language Models [69.22958802711017]
We propose a new efficient tuning approach for vision-language models (VLMs) named Task Residual Tuning (TaskRes)
TaskRes explicitly decouples the prior knowledge of the pre-trained models and new knowledge regarding a target task.
The proposed TaskRes is simple yet effective, which significantly outperforms previous methods on 11 benchmark datasets.
arXiv Detail & Related papers (2022-11-18T15:09:03Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot object detection (FSOD) aims at learning a generic detector that can adapt to unseen tasks with scarce training samples.
We present an efficient pretrain-transfer framework (PTF) baseline with no computational increment.
We also propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights.
arXiv Detail & Related papers (2022-03-23T06:24:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.