Quantifying Memory Utilization with Effective State-Size
- URL: http://arxiv.org/abs/2504.19561v1
- Date: Mon, 28 Apr 2025 08:12:30 GMT
- Title: Quantifying Memory Utilization with Effective State-Size
- Authors: Rom N. Parnichkun, Neehal Tumma, Armin W. Thomas, Alessandro Moro, Qi An, Taiji Suzuki, Atsushi Yamashita, Michael Poli, Stefano Massaroli,
- Abstract summary: We develop a measure of textitmemory utilization'<n>This metric is tailored to the fundamental class of systems with textitinput-invariant and textitinput-varying linear operators
- Score: 73.52115209375343
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The need to develop a general framework for architecture analysis is becoming increasingly important, given the expanding design space of sequence models. To this end, we draw insights from classical signal processing and control theory, to develop a quantitative measure of \textit{memory utilization}: the internal mechanisms through which a model stores past information to produce future outputs. This metric, which we call \textbf{\textit{effective state-size}} (ESS), is tailored to the fundamental class of systems with \textit{input-invariant} and \textit{input-varying linear operators}, encompassing a variety of computational units such as variants of attention, convolutions, and recurrences. Unlike prior work on memory utilization, which either relies on raw operator visualizations (e.g. attention maps), or simply the total \textit{memory capacity} (i.e. cache size) of a model, our metrics provide highly interpretable and actionable measurements. In particular, we show how ESS can be leveraged to improve initialization strategies, inform novel regularizers and advance the performance-efficiency frontier through model distillation. Furthermore, we demonstrate that the effect of context delimiters (such as end-of-speech tokens) on ESS highlights cross-architectural differences in how large language models utilize their available memory to recall information. Overall, we find that ESS provides valuable insights into the dynamics that dictate memory utilization, enabling the design of more efficient and effective sequence models.
Related papers
- Structured Token Retention and Computational Memory Paths in Large Language Models [0.0]
This paper introduces a probabilistic selection framework that dynamically adjusts token persistence based on contextual significance.<n>It is extended through hierarchical memory allocation, refining retention efficiency through structured reallocation of token embeddings.<n>The integration of STR and CMP into an open-source model illustrates the adaptability of structured memory retention methodologies.
arXiv Detail & Related papers (2025-02-05T11:59:22Z) - Autonomous Structural Memory Manipulation for Large Language Models Using Hierarchical Embedding Augmentation [0.0]
This study introduces hierarchical embedding augmentation as a means to redefine the representation of tokens through multi-level semantic structures.<n>Results reveal substantial improvements in computational efficiency, with marked reductions in processing overhead for longer input sequences.<n>The ability to dynamically adjust token representations and memory configurations contributed to the model's robustness under varied and unpredictable input conditions.
arXiv Detail & Related papers (2025-01-23T22:20:36Z) - CSR:Achieving 1 Bit Key-Value Cache via Sparse Representation [63.65323577445951]
We propose a novel approach called Cache Sparse Representation (CSR)<n>CSR transforms the dense Key-Value cache tensor into sparse indexes and weights, offering a more memory-efficient representation during LLM inference.<n>Our experiments demonstrate CSR achieves performance comparable to state-of-the-art KV cache quantization algorithms.
arXiv Detail & Related papers (2024-12-16T13:01:53Z) - Mathematical Formalism for Memory Compression in Selective State Space Models [0.0]
State space models (SSMs) have emerged as a powerful framework for modelling long-range dependencies in sequence data.
We develop a rigorous mathematical framework for understanding memory compression in selective state space models.
We show that selective SSMs offer significant improvements in memory efficiency and processing speed compared to traditional RNN-based models.
arXiv Detail & Related papers (2024-10-04T05:45:48Z) - Simple linear attention language models balance the recall-throughput tradeoff [60.06020449520365]
We propose BASED, a simple architecture combining linear and sliding window attention.<n>We train language models up to 1.3b parameters and show that BASED matches the strongest sub-quadratic models in perplexity and outperforms them on real-world recall-intensive tasks by 6.22 accuracy points.
arXiv Detail & Related papers (2024-02-28T19:28:27Z) - Topology-aware Embedding Memory for Continual Learning on Expanding Networks [63.35819388164267]
We present a framework to tackle the memory explosion problem using memory replay techniques.
PDGNNs with Topology-aware Embedding Memory (TEM) significantly outperform state-of-the-art techniques.
arXiv Detail & Related papers (2024-01-24T03:03:17Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Vocabulary-level Memory Efficiency for Language Model Fine-tuning [36.1039389951318]
We show that a significant proportion of the vocabulary remains unused during fine-tuning.<n>We propose a simple yet effective approach that leverages this finding to minimize memory usage.<n>Our approach does not impact downstream task performance, while allowing more efficient use of computational resources.
arXiv Detail & Related papers (2023-09-15T19:00:00Z) - A survey on efficient vision transformers: algorithms, techniques, and
performance benchmarking [19.65897437342896]
Vision Transformer (ViT) architectures are becoming increasingly popular and widely employed to tackle computer vision applications.
This paper mathematically defines the strategies used to make Vision Transformer efficient, describes and discusses state-of-the-art methodologies, and analyzes their performances over different application scenarios.
arXiv Detail & Related papers (2023-09-05T08:21:16Z) - Joint Modeling of Feature, Correspondence, and a Compressed Memory for
Video Object Segmentation [52.11279360934703]
Current prevailing Video Object (VOS) methods usually perform dense matching between the current and reference frames after extracting features.
We propose a unified VOS framework, coined as JointFormer, for joint modeling of the three elements of feature, correspondence, and a compressed memory.
arXiv Detail & Related papers (2023-08-25T17:30:08Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.