Just One Layer Norm Guarantees Stable Extrapolation
- URL: http://arxiv.org/abs/2505.14512v1
- Date: Tue, 20 May 2025 15:39:27 GMT
- Title: Just One Layer Norm Guarantees Stable Extrapolation
- Authors: Juliusz Ziomek, George Whittle, Michael A. Osborne,
- Abstract summary: We prove general results by applying Neural Kernel Tangent (NTK) theory to analyse infinitely-wide neural networks trained until convergence.<n>We show that the output of an infinitely wide network with at least one LN remains bounded, even on inputs far from the training data.<n>We explore real-world implications, including applications to predicting residue sizes in proteins larger than those seen during training and estimating age from facial images of underrepresented ethnicities absent from the training set.
- Score: 18.1154945039478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In spite of their prevalence, the behaviour of Neural Networks when extrapolating far from the training distribution remains poorly understood, with existing results limited to specific cases. In this work, we prove general results -- the first of their kind -- by applying Neural Tangent Kernel (NTK) theory to analyse infinitely-wide neural networks trained until convergence and prove that the inclusion of just one Layer Norm (LN) fundamentally alters the induced NTK, transforming it into a bounded-variance kernel. As a result, the output of an infinitely wide network with at least one LN remains bounded, even on inputs far from the training data. In contrast, we show that a broad class of networks without LN can produce pathologically large outputs for certain inputs. We support these theoretical findings with empirical experiments on finite-width networks, demonstrating that while standard NNs often exhibit uncontrolled growth outside the training domain, a single LN layer effectively mitigates this instability. Finally, we explore real-world implications of this extrapolatory stability, including applications to predicting residue sizes in proteins larger than those seen during training and estimating age from facial images of underrepresented ethnicities absent from the training set.
Related papers
- Divergence of Empirical Neural Tangent Kernel in Classification Problems [0.0]
In classification problems, fully connected neural networks (FCNs) and residual neural networks (ResNets) cannot be approximated by kernel logistic regression based on the Neural Tangent Kernel (NTK)<n>We show that the empirical NTK does not uniformly converge to the NTK across all times on the training samples as the network width increases.
arXiv Detail & Related papers (2025-04-15T12:30:21Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
We show that when the data distribution is well-separated, DNNs can achieve Bayes-optimal test error for classification.
Our results indicate that interpolating with smoother functions leads to better generalization.
arXiv Detail & Related papers (2023-05-30T19:37:44Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Neural Networks with Sparse Activation Induced by Large Bias: Tighter Analysis with Bias-Generalized NTK [86.45209429863858]
We study training one-hidden-layer ReLU networks in the neural tangent kernel (NTK) regime.
We show that the neural networks possess a different limiting kernel which we call textitbias-generalized NTK
We also study various properties of the neural networks with this new kernel.
arXiv Detail & Related papers (2023-01-01T02:11:39Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
The study on NTK has been devoted to typical neural network architectures, but is incomplete for neural networks with Hadamard products (NNs-Hp)
In this work, we derive the finite-width-K formulation for a special class of NNs-Hp, i.e., neural networks.
We prove their equivalence to the kernel regression predictor with the associated NTK, which expands the application scope of NTK.
arXiv Detail & Related papers (2022-09-16T06:36:06Z) - Limitations of the NTK for Understanding Generalization in Deep Learning [13.44676002603497]
We study NTKs through the lens of scaling laws, and demonstrate that they fall short of explaining important aspects of neural network generalization.
We show that even if the empirical NTK is allowed to be pre-trained on a constant number of samples, the kernel scaling does not catch up to the neural network scaling.
arXiv Detail & Related papers (2022-06-20T21:23:28Z) - On Feature Learning in Neural Networks with Global Convergence
Guarantees [49.870593940818715]
We study the optimization of wide neural networks (NNs) via gradient flow (GF)
We show that when the input dimension is no less than the size of the training set, the training loss converges to zero at a linear rate under GF.
We also show empirically that, unlike in the Neural Tangent Kernel (NTK) regime, our multi-layer model exhibits feature learning and can achieve better generalization performance than its NTK counterpart.
arXiv Detail & Related papers (2022-04-22T15:56:43Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
We study how random pruning of the weights affects a neural network's neural kernel (NTK)
In particular, this work establishes an equivalence of the NTKs between a fully-connected neural network and its randomly pruned version.
arXiv Detail & Related papers (2022-03-27T15:22:19Z) - Learning and Generalization in Overparameterized Normalizing Flows [13.074242275886977]
Normalizing flows (NFs) constitute an important class of models in unsupervised learning.
We provide theoretical and empirical evidence that for a class of NFs containing most of the existing NF models, overparametrization hurts training.
We prove that unconstrained NFs can efficiently learn any reasonable data distribution under minimal assumptions when the underlying network is overparametrized.
arXiv Detail & Related papers (2021-06-19T17:11:42Z) - The Surprising Simplicity of the Early-Time Learning Dynamics of Neural
Networks [43.860358308049044]
In work, we show that these common perceptions can be completely false in the early phase of learning.
We argue that this surprising simplicity can persist in networks with more layers with convolutional architecture.
arXiv Detail & Related papers (2020-06-25T17:42:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.