Neural Inverse Scattering with Score-based Regularization
- URL: http://arxiv.org/abs/2505.14560v1
- Date: Tue, 20 May 2025 16:19:16 GMT
- Title: Neural Inverse Scattering with Score-based Regularization
- Authors: Yuan Gao, Wenhan Guo, Yu Sun,
- Abstract summary: Inverse scattering is a fundamental challenge in many imaging applications.<n>We propose a regularized neural field (NF) approach which integrates the denoising score function used in score-based generative models.
- Score: 10.078914938585228
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inverse scattering is a fundamental challenge in many imaging applications, ranging from microscopy to remote sensing. Solving this problem often requires jointly estimating two unknowns -- the image and the scattering field inside the object -- necessitating effective image prior to regularize the inference. In this paper, we propose a regularized neural field (NF) approach which integrates the denoising score function used in score-based generative models. The neural field formulation offers convenient flexibility to performing joint estimation, while the denoising score function imposes the rich structural prior of images. Our results on three high-contrast simulated objects show that the proposed approach yields a better imaging quality compared to the state-of-the-art NF approach, where regularization is based on total variation.
Related papers
- Score-Based Turbo Message Passing for Plug-and-Play Compressive Image Recovery [24.60447255507278]
Off-the-shelf image denoisers mostly rely on some generic or hand-crafted priors for denoising.<n>We devise a message passing framework that integrates a score-based minimum mean squared error (MMSE) denoiser for compressive image recovery.
arXiv Detail & Related papers (2025-03-28T04:30:58Z) - RSR-NF: Neural Field Regularization by Static Restoration Priors for Dynamic Imaging [5.569092860148177]
In inverse problem of dynamic computed tomography (dCT), only a single projection at one view angle is available at a time.<n>Ground-truth dynamic data is usually either unavailable or too scarce to be used for supervised learning techniques.<n>We use an ADMM-based algorithm with variable splitting to efficiently optimize the variational objective.
arXiv Detail & Related papers (2025-03-13T03:50:47Z) - Enhancing Dynamic CT Image Reconstruction with Neural Fields and Optical Flow [0.0]
We show the benefits of introducing explicit motion regularizers for dynamic inverse problems based on partial differential equations.<n>We also compare neural fields against a grid-based solver and show that the former outperforms the latter in terms of PSNR.
arXiv Detail & Related papers (2024-06-03T13:07:29Z) - Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction [31.503662384666274]
In science and engineering, the goal is to infer an unknown image from a small number of measurements collected from a known forward model describing certain imaging modality.
Motivated Score-based diffusion models, due to its empirical success, have emerged as an impressive candidate of an exemplary prior in image reconstruction.
arXiv Detail & Related papers (2024-03-25T15:58:26Z) - IntrinsicNeRF: Learning Intrinsic Neural Radiance Fields for Editable
Novel View Synthesis [90.03590032170169]
We present intrinsic neural radiance fields, dubbed IntrinsicNeRF, which introduce intrinsic decomposition into the NeRF-based neural rendering method.
Our experiments and editing samples on both object-specific/room-scale scenes and synthetic/real-word data demonstrate that we can obtain consistent intrinsic decomposition results.
arXiv Detail & Related papers (2022-10-02T22:45:11Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
This paper presents an uncalibrated deep neural network framework for the photometric stereo problem.
Existing neural network-based methods either require exact light directions or ground-truth surface normals of the object or both.
We propose an uncalibrated neural inverse rendering approach to this problem.
arXiv Detail & Related papers (2020-12-12T10:33:08Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
Group-based image restoration methods are more effective in gathering the similarity among patches.
For each patch, we find and group the most similar patches within a searching window.
The proposed method is superior to other current state-of-the-art denoising methods in both subjective and objective criterion.
arXiv Detail & Related papers (2020-08-09T15:12:16Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z) - Image Response Regression via Deep Neural Networks [4.646077947295938]
We propose a novel nonparametric approach in the framework of spatially varying coefficient models, where the spatially varying functions are estimated through deep neural networks.
A key idea in our approach is to treat the image voxels as spatial effective samples, which alleviates the limited sample size issue that haunts the majority of medical imaging studies.
We demonstrate the efficacy of the method through intensive simulations, and further illustrate its advantages analyses of two functional magnetic resonance imaging datasets.
arXiv Detail & Related papers (2020-06-17T14:45:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.