Image Response Regression via Deep Neural Networks
- URL: http://arxiv.org/abs/2006.09911v4
- Date: Thu, 3 Mar 2022 02:26:24 GMT
- Title: Image Response Regression via Deep Neural Networks
- Authors: Daiwei Zhang, Lexin Li, Chandra Sripada, Jian Kang
- Abstract summary: We propose a novel nonparametric approach in the framework of spatially varying coefficient models, where the spatially varying functions are estimated through deep neural networks.
A key idea in our approach is to treat the image voxels as spatial effective samples, which alleviates the limited sample size issue that haunts the majority of medical imaging studies.
We demonstrate the efficacy of the method through intensive simulations, and further illustrate its advantages analyses of two functional magnetic resonance imaging datasets.
- Score: 4.646077947295938
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Delineating the associations between images and a vector of covariates is of
central interest in medical imaging studies. To tackle this problem of image
response regression, we propose a novel nonparametric approach in the framework
of spatially varying coefficient models, where the spatially varying functions
are estimated through deep neural networks. Compared to existing solutions, the
proposed method explicitly accounts for spatial smoothness and subject
heterogeneity, has straightforward interpretations, and is highly flexible and
accurate in capturing complex association patterns. A key idea in our approach
is to treat the image voxels as the effective samples, which not only
alleviates the limited sample size issue that haunts the majority of medical
imaging studies, but also leads to more robust and reproducible results.
Focusing on a broad family of piecewise smooth functions, we establish the
estimation and selection consistency, and derive the asymptotic error bounds.
We demonstrate the efficacy of the method through intensive simulations, and
further illustrate its advantages with analyses of two functional magnetic
resonance imaging datasets.
Related papers
- Space-Variant Total Variation boosted by learning techniques in few-view tomographic imaging [0.0]
This paper focuses on the development of a space-variant regularization model for solving an under-determined linear inverse problem.
The primary objective of the proposed model is to achieve a good balance between denoising and the preservation of fine details and edges.
A convolutional neural network is designed, to approximate both the ground truth image and its gradient using an elastic loss function in its training.
arXiv Detail & Related papers (2024-04-25T08:58:41Z) - Convolutional neural network based on sparse graph attention mechanism
for MRI super-resolution [0.34410212782758043]
Medical image super-resolution (SR) reconstruction using deep learning techniques can enhance lesion analysis and assist doctors in improving diagnostic efficiency and accuracy.
Existing deep learning-based SR methods rely on convolutional neural networks (CNNs), which inherently limit the expressive capabilities of these models.
We propose an A-network that utilizes multiple convolution operator feature extraction modules (MCO) for extracting image features.
arXiv Detail & Related papers (2023-05-29T06:14:22Z) - Mining the manifolds of deep generative models for multiple
data-consistent solutions of ill-posed tomographic imaging problems [10.115302976900445]
Tomographic imaging is in general an ill-posed inverse problem.
We propose a new empirical sampling method that computes multiple solutions of a tomographic inverse problem.
arXiv Detail & Related papers (2022-02-10T20:27:31Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
Photoacoustic tomography (PAT) has the potential to recover morphological and functional tissue properties.
We propose a novel approach to PAT data simulation, which we refer to as "learning to simulate"
We leverage the concept of Generative Adversarial Networks (GANs) trained on semantically annotated medical imaging data to generate plausible tissue geometries.
arXiv Detail & Related papers (2021-03-29T11:30:18Z) - Representation Disentanglement for Multi-modal MR Analysis [15.498244253687337]
Recent works have suggested that multi-modal deep learning analysis can benefit from explicitly disentangling anatomical (shape) and modality (appearance) representations from the images.
We propose a margin loss that regularizes the similarity relationships of the representations across subjects and modalities.
To enable a robust training, we introduce a modified conditional convolution to design a single model for encoding images of all modalities.
arXiv Detail & Related papers (2021-02-23T02:08:38Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.