論文の概要: Instance Segmentation for Point Sets
- arxiv url: http://arxiv.org/abs/2505.14583v1
- Date: Tue, 20 May 2025 16:40:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:53.582659
- Title: Instance Segmentation for Point Sets
- Title(参考訳): 点集合のインスタンスセグメンテーション
- Authors: Abhimanyu Talwar, Julien Laasri,
- Abstract要約: PointNet [QSMG16]やPointNet++ [QYSG17]のようなニューラルネットワークアーキテクチャは、ディープラーニングを3Dポイントセットに適用可能にする。
本稿では,2つのサンプリング手法を用いてこの問題に対処する。
どちらのアプローチも大きなサブサンプルでも同等に機能するが、ランダムベースの戦略は速度とメモリ使用率の面で最大の改善をもたらす。
- 参考スコア(独自算出の注目度): 0.276240219662896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently proposed neural network architectures like PointNet [QSMG16] and PointNet++ [QYSG17] have made it possible to apply Deep Learning to 3D point sets. The feature representations of shapes learned by these two networks enabled training classifiers for Semantic Segmentation, and more recently for Instance Segmentation via the Similarity Group Proposal Network (SGPN) [WYHN17]. One area of improvement which has been highlighted by SGPN's authors, pertains to use of memory intensive similarity matrices which occupy memory quadratic in the number of points. In this report, we attempt to tackle this issue through use of two sampling based methods, which compute Instance Segmentation on a sub-sampled Point Set, and then extrapolate labels to the complete set using the nearest neigbhour approach. While both approaches perform equally well on large sub-samples, the random-based strategy gives the most improvements in terms of speed and memory usage.
- Abstract(参考訳): 最近提案されたPointNet [QSMG16]やPointNet++ [QYSG17]のようなニューラルネットワークアーキテクチャにより、3DポイントセットにDeep Learningを適用することが可能になった。
これら2つのネットワークで学習した形状の特徴表現により,セマンティックセグメンテーションのトレーニング分類が可能となり,より最近ではSGPNによるインスタンスセグメンテーションが実現された[WYHN17]。
SGPNの著者らによって強調された改善の1つの領域は、点数においてメモリ二次を占有するメモリ集約類似性行列の使用に関するものである。
本稿では,2つのサンプリングベース手法を用いて,サブサンプルのPoint Set上でのインスタンスセグメンテーションを計算し,最も近いNeigbhourアプローチを用いてラベルを全集合に外挿する手法を提案する。
どちらのアプローチも大きなサブサンプルでも同等に機能するが、ランダムベースの戦略は速度とメモリ使用率の面で最大の改善をもたらす。
関連論文リスト
- ISBNet: a 3D Point Cloud Instance Segmentation Network with
Instance-aware Sampling and Box-aware Dynamic Convolution [14.88505076974645]
ISBNetは、インスタンスをカーネルとして表現し、動的畳み込みを通じてインスタンスマスクをデコードする新しい方法である。
我々は,ScanNetV2 (55.9), S3DIS (60.8), S3LS3D (49.2) にAPの条件で新たな最先端結果を設定し,ScanNetV2のシーンあたり237msの高速推論時間を保持する。
論文 参考訳(メタデータ) (2023-03-01T06:06:28Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
本稿では,ポイント単位の予測方式で機能する,完全畳み込み型3Dポイントクラウドインスタンスセグメンテーション手法を提案する。
その成功の鍵は、各サンプルポイントに適切なターゲットを割り当てることにある。
提案手法はScanNetとS3DISのベンチマークで有望な結果が得られる。
論文 参考訳(メタデータ) (2022-04-25T02:41:46Z) - GSIP: Green Semantic Segmentation of Large-Scale Indoor Point Clouds [64.86292006892093]
GSIP (Green of Indoor Point clouds) は大規模屋内シーンポイント雲のセマンティックセグメンテーションの効率的なソリューションである。
GSIPには2つの新しいコンポーネントがある: 1) 更なる処理のためにポイントの適切なサブセットを選択するルームスタイルのデータ前処理方法、2) ポイントホップから拡張された新しい特徴抽出器。
実験の結果、GSIPはS3DISデータセットのセグメンテーション性能においてPointNetよりも優れていた。
論文 参考訳(メタデータ) (2021-09-24T09:26:53Z) - Self-Prediction for Joint Instance and Semantic Segmentation of Point
Clouds [41.75579185647845]
我々は,3次元のインスタンスと点雲のセマンティックセグメンテーションのための新たな学習手法であるSelf-Predictionを開発した。
本手法は,S3DISとShapeNetのインスタンスセグメンテーション結果と,S3DISとShapeNetのセグメンテーション結果に匹敵するセグメンテーション結果を得る。
論文 参考訳(メタデータ) (2020-07-27T07:58:00Z) - Few-shot 3D Point Cloud Semantic Segmentation [138.80825169240302]
本稿では,新しい注意型マルチプロトタイプトランスダクティブ・ショットポイント・クラウドセマンティックセマンティック・セマンティクス法を提案する。
提案手法は,雲のセマンティックセマンティックセグメンテーション設定の違いによるベースラインに比べて,顕著で一貫した改善を示す。
論文 参考訳(メタデータ) (2020-06-22T08:05:25Z) - PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation [111.7241018610573]
私たちは、インスタンスセグメンテーションのための新しいエンドツーエンドボトムアップアーキテクチャであるPointGroupを紹介します。
我々は2分岐ネットワークを設計し、ポイントの特徴を抽出し、セマンティックラベルとオフセットを予測し、各ポイントをそれぞれのインスタンスセントロイドに向けてシフトさせる。
クラスタリングコンポーネントは、元のおよびオフセットシフトされた点座標セットの両方を利用するために、その相補的な強度を利用する。
ScanNet v2 と S3DIS の2つの挑戦的データセットに対する広範な実験を行い、ScanNet v2 と S3DIS が最も高い性能を達成し、63.6% と 64.0% の2つを以前のベストが達成した54.9% と54.4% と比較した。
論文 参考訳(メタデータ) (2020-04-03T16:26:37Z) - Deep Affinity Net: Instance Segmentation via Affinity [48.498706304017674]
Deep Affinity Netは、グラフ分割アルゴリズムCascade-GAECを伴って、効果的なアフィニティベースのアプローチである。
すべてのアフィニティベースのモデルの中で、最高のシングルショット結果と最速のランニングタイムを達成する。
また、リージョンベースのMask R-CNNよりも優れています。
論文 参考訳(メタデータ) (2020-03-15T15:22:56Z) - PointINS: Point-based Instance Segmentation [117.38579097923052]
POI(Point-of-Interest)機能によるインスタンスセグメンテーションにおけるマスク表現は、各インスタンスの高次元マスク機能を学ぶには、計算負荷が重いため、難しい。
本稿では、このマスク表現学習タスクを2つの抽出可能なモジュールに分解するインスタンス認識畳み込みを提案する。
インスタンス認識の畳み込みとともに、単純で実用的なインスタンスセグメンテーションアプローチであるPointINSを提案する。
論文 参考訳(メタデータ) (2020-03-13T08:24:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。