Paving the way for scientific foundation models: enhancing generalization and robustness in PDEs with constraint-aware pre-training
- URL: http://arxiv.org/abs/2503.19081v1
- Date: Mon, 24 Mar 2025 19:12:39 GMT
- Title: Paving the way for scientific foundation models: enhancing generalization and robustness in PDEs with constraint-aware pre-training
- Authors: Amin Totounferoush, Serge Kotchourko, Michael W. Mahoney, Steffen Staab,
- Abstract summary: A scientific foundation model (SciFM) is emerging as a promising tool for learning transferable representations across diverse domains.<n>We propose incorporating PDE residuals into pre-training either as the sole learning signal or in combination with data loss to compensate for limited or infeasible training data.<n>Our results show that pre-training with PDE constraints significantly enhances generalization, outperforming models trained solely on solution data.
- Score: 49.8035317670223
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Partial differential equations (PDEs) govern a wide range of physical systems, but solving them efficiently remains a major challenge. The idea of a scientific foundation model (SciFM) is emerging as a promising tool for learning transferable representations across diverse domains. However, SciFMs require large amounts of solution data, which may be scarce or computationally expensive to generate. To maximize generalization while reducing data dependence, we propose incorporating PDE residuals into pre-training either as the sole learning signal or in combination with data loss to compensate for limited or infeasible training data. We evaluate this constraint-aware pre-training across three key benchmarks: (i) generalization to new physics, where material properties, e.g., the diffusion coefficient, is shifted with respect to the training distribution; (ii) generalization to entirely new PDEs, requiring adaptation to different operators; and (iii) robustness against noisy fine-tuning data, ensuring stability in real-world applications. Our results show that pre-training with PDE constraints significantly enhances generalization, outperforming models trained solely on solution data across all benchmarks. These findings prove the effectiveness of our proposed constraint-aware pre-training as a crucial component for SciFMs, providing a scalable approach to data-efficient, generalizable PDE solvers.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - MaD-Scientist: AI-based Scientist solving Convection-Diffusion-Reaction Equations Using Massive PINN-Based Prior Data [22.262191225577244]
We explore whether a similar approach can be applied to scientific foundation models (SFMs)
We collect low-cost physics-informed neural network (PINN)-based approximated prior data in the form of solutions to partial differential equations (PDEs) constructed through an arbitrary linear combination of mathematical dictionaries.
We provide experimental evidence on the one-dimensional convection-diffusion-reaction equation, which demonstrate that pre-training remains robust even with approximated prior data.
arXiv Detail & Related papers (2024-10-09T00:52:00Z) - Adversarial Learning for Neural PDE Solvers with Sparse Data [4.226449585713182]
This study introduces a universal learning strategy for neural network PDEs, named Systematic Model Augmentation for Robust Training.
By focusing on challenging and improving the model's weaknesses, SMART reduces generalization error during training under data-scarce conditions.
arXiv Detail & Related papers (2024-09-04T04:18:25Z) - DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training [87.90342423839876]
We present a new auto-regressive denoising pre-training strategy, which allows for more stable and efficient pre-training on PDE data.
We train our PDE foundation model with up to 0.5B parameters on 10+ PDE datasets with more than 100k trajectories.
arXiv Detail & Related papers (2024-03-06T08:38:34Z) - Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning [45.78096783448304]
In this work, seeking data efficiency, we design unsupervised pretraining for PDE operator learning.
We mine unlabeled PDE data without simulated solutions, and we pretrain neural operators with physics-inspired reconstruction-based proxy tasks.
Our method is highly data-efficient, more generalizable, and even outperforms conventional vision-pretrained models.
arXiv Detail & Related papers (2024-02-24T06:27:33Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Self-Supervised Learning with Lie Symmetries for Partial Differential
Equations [25.584036829191902]
We learn general-purpose representations of PDEs by implementing joint embedding methods for self-supervised learning (SSL)
Our representation outperforms baseline approaches to invariant tasks, such as regressing the coefficients of a PDE, while also improving the time-stepping performance of neural solvers.
We hope that our proposed methodology will prove useful in the eventual development of general-purpose foundation models for PDEs.
arXiv Detail & Related papers (2023-07-11T16:52:22Z) - Elliptic PDE learning is provably data-efficient [7.097838977449412]
PDE learning combines physics and machine learning to recover unknown physical systems from experimental data.
Our work provides theoretical guarantees on the number of input-output training pairs required in PDE learning.
Specifically, we exploit randomized numerical linear algebra and PDE theory to derive a provably data-efficient algorithm that recovers solution operators of 3D uniformly elliptic PDEs from input-output data.
arXiv Detail & Related papers (2023-02-24T20:51:23Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.