論文の概要: Bridging Predictive Coding and MDL: A Two-Part Code Framework for Deep Learning
- arxiv url: http://arxiv.org/abs/2505.14635v1
- Date: Tue, 20 May 2025 17:25:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:53.644149
- Title: Bridging Predictive Coding and MDL: A Two-Part Code Framework for Deep Learning
- Title(参考訳): Bridging Predictive Coding and MDL: ディープラーニングのための2部構成のコードフレームワーク
- Authors: Benjamin Prada, Shion Matsumoto, Abdul Malik Zekri, Ankur Mali,
- Abstract要約: 階層的にPCが最小記述長目標に対してブロック座標降下を行うことを示す。
さらに、各PCスイープが経験的2部分符号長を単調に減少させ、より厳密な高確率リスク境界をもたらすことを証明した。
これはPC訓練深層モデルの形式的一般化と収束保証を提供する最初の結果である。
- 参考スコア(独自算出の注目度): 1.749935196721634
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the first theoretical framework that connects predictive coding (PC), a biologically inspired local learning rule, with the minimum description length (MDL) principle in deep networks. We prove that layerwise PC performs block-coordinate descent on the MDL two-part code objective, thereby jointly minimizing empirical risk and model complexity. Using Hoeffding's inequality and a prefix-code prior, we derive a novel generalization bound of the form $R(\theta) \le \^{R}(\theta) + \frac{L(\theta)}{N}$, capturing the tradeoff between fit and compression. We further prove that each PC sweep monotonically decreases the empirical two-part codelength, yielding tighter high-probability risk bounds than unconstrained gradient descent. Finally, we show that repeated PC updates converge to a block-coordinate stationary point, providing an approximate MDL-optimal solution. To our knowledge, this is the first result offering formal generalization and convergence guarantees for PC-trained deep models, positioning PC as a theoretically grounded and biologically plausible alternative to backpropagation.
- Abstract(参考訳): 本稿では,生物にインスパイアされた局所学習ルールである予測符号化(PC)と,深層ネットワークにおける最小記述長(MDL)の原理を結びつける最初の理論的枠組みを提案する。
層状PCはMDLの2部符号の目的に基づいてブロック座標降下を行い、経験的リスクとモデルの複雑さを最小化する。
ホーフディングの不等式とプレフィックス符号を用いて、$R(\theta) \le \^{R}(\theta) + \frac{L(\theta)}{N}$ という形の新たな一般化を導出し、適合と圧縮の間のトレードオフを捉える。
さらに、各PCスイープが経験的2部分符号長を単調に減少させ、制約のない勾配降下よりも高い確率リスク境界が得られることを証明した。
最後に,PCの繰り返し更新がブロック座標の定常点に収束し,MDL最適解が得られることを示す。
我々の知る限り、これはPC訓練深層モデルの形式的一般化と収束保証を提供する最初の結果であり、PCをバックプロパゲーションの理論的根拠と生物学的に妥当な代替品として位置づけている。
関連論文リスト
- Local Loss Optimization in the Infinite Width: Stable Parameterization of Predictive Coding Networks and Target Propagation [8.35644084613785]
局所目標の2つの代表的設計に対して、無限幅極限における最大更新パラメータ化(mu$P)を導入する。
深層線形ネットワークを解析した結果,PCの勾配は1次勾配とガウス・ニュートン様勾配の間に介在していることが判明した。
我々は、特定の標準設定において、無限幅制限のPCは、一階勾配とよりよく似た振る舞いをすることを示した。
論文 参考訳(メタデータ) (2024-11-04T11:38:27Z) - Provably Efficient Information-Directed Sampling Algorithms for Multi-Agent Reinforcement Learning [50.92957910121088]
本研究は,情報指向サンプリング(IDS)の原理に基づくマルチエージェント強化学習(MARL)のための新しいアルゴリズムの設計と解析を行う。
エピソディックな2プレーヤゼロサムMGに対して、ナッシュ平衡を学習するための3つのサンプル効率アルゴリズムを提案する。
我々は、Reg-MAIDSをマルチプレイヤー汎用MGに拡張し、ナッシュ平衡または粗相関平衡をサンプル効率良く学習できることを証明する。
論文 参考訳(メタデータ) (2024-04-30T06:48:56Z) - Is Inverse Reinforcement Learning Harder than Standard Reinforcement
Learning? A Theoretical Perspective [55.36819597141271]
逆強化学習(IRL: Inverse Reinforcement Learning)は、インテリジェントシステム開発において重要な役割を担う。
本稿では、サンプルとランタイムを用いて、バニラのオフラインおよびオンライン設定における効率的なIRLの最初のラインを提供する。
応用として、学習した報酬は適切な保証で他のターゲットMDPに転送可能であることを示す。
論文 参考訳(メタデータ) (2023-11-29T00:09:01Z) - Provably Efficient CVaR RL in Low-rank MDPs [58.58570425202862]
リスクに敏感な強化学習(RL)について検討する。
本稿では, CVaR RLにおける探索, 搾取, 表現学習の相互作用のバランスをとるための, 新たなアッパー信頼境界(UCB)ボーナス駆動アルゴリズムを提案する。
提案アルゴリズムは,各エピソードの長さが$H$,アクション空間が$A$,表現の次元が$d$であるような,エプシロン$最適CVaRのサンプル複雑性を実現する。
論文 参考訳(メタデータ) (2023-11-20T17:44:40Z) - Improved Sample Complexity for Reward-free Reinforcement Learning under
Low-rank MDPs [43.53286390357673]
本稿では,低ランクMDPモデルによる報酬なし強化学習に焦点を当てた。
我々はまず、低ランクのMDPの下での任意のアルゴリズムに対して、最初の既知のサンプル複雑性の低い境界を提供する。
次に、RAFFLEと呼ばれる新しいモデルベースアルゴリズムを提案し、$epsilon$-optimal Policyを見つけ、$epsilon$-accurate system IDを実現できることを示す。
論文 参考訳(メタデータ) (2023-03-20T04:39:39Z) - Curvature-Sensitive Predictive Coding with Approximate Laplace Monte
Carlo [1.1470070927586016]
予測符号化(PC: Predictive coding)は、現在、脳における支配的な計算理論の1つとなっている。
それにもかかわらず、彼らは機械学習の幅広い分野への輸出をほとんど楽しんだ。
これは、PCでトレーニングされたモデルの性能が、サンプルの品質と限界確率の両方で評価されているためである。
論文 参考訳(メタデータ) (2023-03-09T01:29:58Z) - A Unified Algebraic Perspective on Lipschitz Neural Networks [88.14073994459586]
本稿では,様々なタイプの1-Lipschitzニューラルネットワークを統一する新しい視点を提案する。
そこで本研究では,SDP(Common semidefinite Programming)条件の解析解を求めることによって,既存の多くの手法を導出し,一般化することができることを示す。
SDPベースのLipschitz Layers (SLL) と呼ばれる我々のアプローチは、非自明で効率的な凸ポテンシャル層の一般化を設計できる。
論文 参考訳(メタデータ) (2023-03-06T14:31:09Z) - Near Instance-Optimal PAC Reinforcement Learning for Deterministic MDPs [24.256960622176305]
エピソードマルコフ決定過程におけるPAC RLのサンプル複雑性について, 上界と下界の整合性について検討した。
私たちの境界は、決定論的リターンギャップ(deterministic return gap)と呼ばれる状態-作用ペアに対して、新たな最適ギャップ(sub-optimality gap)を特徴とする。
彼らの設計と分析は、最小フローや最大カットといったグラフ理論の概念を含む新しいアイデアを採用している。
論文 参考訳(メタデータ) (2022-03-17T11:19:41Z) - MDPGT: Momentum-based Decentralized Policy Gradient Tracking [29.22173174168708]
マルチエージェント強化学習のための運動量に基づく分散型ポリシー勾配追跡(MDPGT)を提案する。
MDPGTは、グローバル平均の$N$ローカルパフォーマンス関数の$epsilon-stationaryポイントに収束するために$mathcalO(N-1epsilon-3)$の最良のサンプル複雑性を実現する。
これは、分散モデルレス強化学習における最先端のサンプル複雑さよりも優れています。
論文 参考訳(メタデータ) (2021-12-06T06:55:51Z) - MMCGAN: Generative Adversarial Network with Explicit Manifold Prior [78.58159882218378]
本稿では,モード崩壊を緩和し,GANのトレーニングを安定させるために,明示的な多様体学習を採用することを提案する。
玩具データと実データの両方を用いた実験により,MMCGANのモード崩壊緩和効果,トレーニングの安定化,生成サンプルの品質向上効果が示された。
論文 参考訳(メタデータ) (2020-06-18T07:38:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。