A quantum unstructured search algorithm for discrete optimisation: the use case of portfolio optimisation
- URL: http://arxiv.org/abs/2505.14645v1
- Date: Tue, 20 May 2025 17:31:44 GMT
- Title: A quantum unstructured search algorithm for discrete optimisation: the use case of portfolio optimisation
- Authors: Titos Matsakos, Adrian Lomas,
- Abstract summary: We propose a quantum unstructured search algorithm to find the extrema or roots of discrete functions, $f(mathbfx)$.<n>The number of operations needed to map $f(mathbfx)$ to $u(z)$ determines the accuracy of the result and the circuit depth.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a quantum unstructured search algorithm to find the extrema or roots of discrete functions, $f(\mathbf{x})$, such as the objective functions in combinatorial and other discrete optimisation problems. The first step of the Quantum Search for Extrema and Roots Algorithm (QSERA) is to translate conditions of the form $f(\mathbf{x}_*) \simeq f_*$, where $f_*$ is the extremum or zero, to an unstructured search problem for $\mathbf{x}_*$. This is achieved by mapping $f(\mathbf{x})$ to a function $u(z)$ to create a quantum oracle, such that $u(z_*) = 1$ and $u(z \neq z_*) = 0$. The next step is to employ Grover's algorithm to find $z_*$, which offers a quadratic speed-up over classical algorithms. The number of operations needed to map $f(\mathbf{x})$ to $u(z)$ determines the accuracy of the result and the circuit depth. We describe the implementation of QSERA by assembling a quantum circuit for portfolio optimisation, which can be formulated as a combinatorial problem. QSERA can handle objective functions with higher order terms than the commonly-used Quadratic Unconstrained Binary Optimisation (QUBO) framework. Moreover, while QSERA requires some a priori knowledge of the extrema of $f(\mathbf{x})$, it can still find approximate solutions even if the conditions are not exactly satisfied.
Related papers
- Quantum Algorithms for Projection-Free Sparse Convex Optimization [32.34794896079469]
For the vector domain, we propose two quantum algorithms for sparse constraints that find a $varepsilon$-optimal solution with the query complexity of $O(sqrtd/varepsilon)$.<n>For the matrix domain, we propose two quantum algorithms for nuclear norm constraints that improve the time complexity to $tildeO(rd/varepsilon2)$ and $tildeO(sqrtrd/varepsilon3)$.
arXiv Detail & Related papers (2025-07-11T12:43:58Z) - Quantum Algorithms for Non-smooth Non-convex Optimization [30.576546266390714]
This paper considers the problem for finding the $(,epsilon)$-Goldstein stationary point of Lipschitz continuous objective.
We construct a zeroth-order quantum estimator for the surrogate oracle function.
arXiv Detail & Related papers (2024-10-21T16:52:26Z) - The Computational Complexity of Finding Stationary Points in Non-Convex Optimization [53.86485757442486]
Finding approximate stationary points, i.e., points where the gradient is approximately zero, of non-order but smooth objective functions is a computational problem.
We show that finding approximate KKT points in constrained optimization is reducible to finding approximate stationary points in unconstrained optimization but the converse is impossible.
arXiv Detail & Related papers (2023-10-13T14:52:46Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - On the exact quantum query complexity of $\text{MOD}_m^n$ and $\text{EXACT}_{k,l}^n$ [4.956977275061968]
We present an exact quantum algorithm for computing $textMOD_mn$.
We show exact quantum query complexity of a broad class of symmetric functions that map $0,1n$ to a finite set $X$ is less than $n$.
arXiv Detail & Related papers (2023-03-20T08:17:32Z) - Deterministic Nonsmooth Nonconvex Optimization [82.39694252205011]
We show that randomization is necessary to obtain a dimension-free dimension-free algorithm.<n>Our algorithm yields the first deterministic dimension-free algorithm for optimizing ReLU networks.
arXiv Detail & Related papers (2023-02-16T13:57:19Z) - Mind the gap: Achieving a super-Grover quantum speedup by jumping to the
end [114.3957763744719]
We present a quantum algorithm that has rigorous runtime guarantees for several families of binary optimization problems.
We show that the algorithm finds the optimal solution in time $O*(2(0.5-c)n)$ for an $n$-independent constant $c$.
We also show that for a large fraction of random instances from the $k$-spin model and for any fully satisfiable or slightly frustrated $k$-CSP formula, statement (a) is the case.
arXiv Detail & Related papers (2022-12-03T02:45:23Z) - The First Optimal Acceleration of High-Order Methods in Smooth Convex
Optimization [88.91190483500932]
We study the fundamental open question of finding the optimal high-order algorithm for solving smooth convex minimization problems.
The reason for this is that these algorithms require performing a complex binary procedure, which makes them neither optimal nor practical.
We fix this fundamental issue by providing the first algorithm with $mathcalOleft(epsilon-2/(p+1)right) $pth order oracle complexity.
arXiv Detail & Related papers (2022-05-19T16:04:40Z) - No quantum speedup over gradient descent for non-smooth convex
optimization [22.16973542453584]
Black-box access to a (not necessarily smooth) function $f:mathbbRn to mathbbR$ and its (sub)gradient.
Our goal is to find an $epsilon$-approximate minimum of $f$ starting from a point that is distance at most $R$ from the true minimum.
We show that although the function family used in the lower bound is hard for randomized algorithms, it can be solved using $O(GR/epsilon)$ quantum queries.
arXiv Detail & Related papers (2020-10-05T06:32:47Z) - Exact Quantum Query Algorithms Outperforming Parity -- Beyond The
Symmetric functions [3.652509571098291]
We first obtain optimal exact quantum query algorithms ($Q_algo(f)$) for a direct sum based class of $Omega left( 2fracsqrtn2 right)$ non-symmetric functions.
We show that query complexity of $Q_algo$ is $lceil frac3n4 rceil$ whereas $D_oplus(f)$ varies between $n-1$ and $lceil frac3n4 rce
arXiv Detail & Related papers (2020-08-14T12:17:48Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.