Towards scalable surrogate models based on Neural Fields for large scale aerodynamic simulations
- URL: http://arxiv.org/abs/2505.14704v1
- Date: Wed, 14 May 2025 10:49:08 GMT
- Title: Towards scalable surrogate models based on Neural Fields for large scale aerodynamic simulations
- Authors: Giovanni Catalani, Jean Fesquet, Xavier Bertrand, Frédéric Tost, Michael Bauerheim, Joseph Morlier,
- Abstract summary: This paper introduces a novel surrogate modeling framework for aerodynamic applications based on Neural Fields.<n>The proposed approach, MARIO, addresses non parametric geometric variability through an efficient shape encoding mechanism.<n>It enables training on significantly downsampled meshes, while maintaining consistent accuracy during full-resolution inference.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel surrogate modeling framework for aerodynamic applications based on Neural Fields. The proposed approach, MARIO (Modulated Aerodynamic Resolution Invariant Operator), addresses non parametric geometric variability through an efficient shape encoding mechanism and exploits the discretization-invariant nature of Neural Fields. It enables training on significantly downsampled meshes, while maintaining consistent accuracy during full-resolution inference. These properties allow for efficient modeling of diverse flow conditions, while reducing computational cost and memory requirements compared to traditional CFD solvers and existing surrogate methods. The framework is validated on two complementary datasets that reflect industrial constraints. First, the AirfRANS dataset consists in a two-dimensional airfoil benchmark with non-parametric shape variations. Performance evaluation of MARIO on this case demonstrates an order of magnitude improvement in prediction accuracy over existing methods across velocity, pressure, and turbulent viscosity fields, while accurately capturing boundary layer phenomena and aerodynamic coefficients. Second, the NASA Common Research Model features three-dimensional pressure distributions on a full aircraft surface mesh, with parametric control surface deflections. This configuration confirms MARIO's accuracy and scalability. Benchmarking against state-of-the-art methods demonstrates that Neural Field surrogates can provide rapid and accurate aerodynamic predictions under the computational and data limitations characteristic of industrial applications.
Related papers
- Fusing CFD and measurement data using transfer learning [49.1574468325115]
We introduce a non-linear method based on neural networks combining simulation and measurement data via transfer learning.<n>In a first step, the neural network is trained on simulation data to learn spatial features of the distributed quantities.<n>The second step involves transfer learning on the measurement data to correct for systematic errors between simulation and measurement by only re-training a small subset of the entire neural network model.
arXiv Detail & Related papers (2025-07-28T07:21:46Z) - FuncGenFoil: Airfoil Generation and Editing Model in Function Space [63.274584650021744]
We introduce FuncGenFoil, a novel function-space generative model that directly reconstructs airfoil geometries as function curves.<n> Empirical evaluations demonstrate that FuncGenFoil improves upon state-of-the-art methods in airfoil generation.
arXiv Detail & Related papers (2025-02-15T07:56:58Z) - Rao-Blackwell Gradient Estimators for Equivariant Denoising Diffusion [41.50816120270017]
In domains such as molecular and protein generation, physical systems exhibit inherent symmetries that are critical to model.<n>We present a framework that reduces training variance and provides a provably lower-variance gradient estimator.<n>We also present a practical implementation of this estimator incorporating the loss and sampling procedure through a method we call Orbit Diffusion.
arXiv Detail & Related papers (2025-02-14T03:26:57Z) - A Geometry-Aware Message Passing Neural Network for Modeling Aerodynamics over Airfoils [61.60175086194333]
aerodynamics is a key problem in aerospace engineering, often involving flows interacting with solid objects such as airfoils.<n>Here, we consider modeling of incompressible flows over solid objects, wherein geometric structures are a key factor in determining aerodynamics.<n>To effectively incorporate geometries, we propose a message passing scheme that efficiently and expressively integrates the airfoil shape with the mesh representation.<n>These design choices lead to a purely data-driven machine learning framework known as GeoMPNN, which won the Best Student Submission award at the NeurIPS 2024 ML4CFD Competition, placing 4th overall.
arXiv Detail & Related papers (2024-12-12T16:05:39Z) - Accelerated training of deep learning surrogate models for surface displacement and flow, with application to MCMC-based history matching of CO2 storage operations [0.0]
We introduce a new surrogate modeling framework to predict CO2 saturation, pressure and surface displacement for use in the history matching of carbon storage operations.
Training here involves a large number of inexpensive flow-only simulations combined with a much smaller number of coupled runs.
arXiv Detail & Related papers (2024-08-20T10:31:52Z) - Aero-Nef: Neural Fields for Rapid Aircraft Aerodynamics Simulations [1.1932047172700866]
This paper presents a methodology to learn surrogate models of steady state fluid dynamics simulations on meshed domains.
The proposed models can be applied directly to unstructured domains for different flow conditions.
Remarkably, the method can perform inference five order of magnitude faster than the high fidelity solver on the RANS transonic airfoil dataset.
arXiv Detail & Related papers (2024-07-29T11:48:44Z) - Event-Based Simulation of Stochastic Memristive Devices for Neuromorphic Computing [41.66366715982197]
We build a general model of memristors suitable for the simulation of event-based systems.
We extend an existing general model of memristors to an event-driven setting.
We demonstrate an approach for fitting the parameters of the event-based model to the drift model.
arXiv Detail & Related papers (2024-06-14T13:17:19Z) - Efficient modeling of sub-kilometer surface wind with Gaussian processes and neural networks [0.0]
Wind represents a particularly challenging variable to model due to its high spatial and temporal variability.
This paper presents a novel approach that integrates Gaussian processes and neural networks to model surface wind gusts at sub-kilometer resolution.
arXiv Detail & Related papers (2024-05-21T09:07:47Z) - Multi-Modal Learning-based Reconstruction of High-Resolution Spatial
Wind Speed Fields [46.72819846541652]
We propose a framework based on Vari Data Assimilation and Deep Learning concepts.
This framework is applied to recover rich-in-time, high-resolution information on sea surface wind speed.
arXiv Detail & Related papers (2023-12-14T13:40:39Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Conditional Korhunen-Lo\'{e}ve regression model with Basis Adaptation
for high-dimensional problems: uncertainty quantification and inverse
modeling [62.997667081978825]
We propose a methodology for improving the accuracy of surrogate models of the observable response of physical systems.
We apply the proposed methodology to constructing surrogate models via the Basis Adaptation (BA) method of the stationary hydraulic head response.
arXiv Detail & Related papers (2023-07-05T18:14:38Z) - Machine learning enhanced real-time aerodynamic forces prediction based
on sparse pressure sensor inputs [7.112725255953468]
This paper presents a data-driven aerodynamic force prediction model based on a small number of pressure sensors.
The model is tested on numerical and experimental dynamic stall data of a 2D NACA0015 airfoil, and numerical simulation data of dynamic stall of a 3D drone.
arXiv Detail & Related papers (2023-05-16T06:15:13Z) - Parametric Generative Schemes with Geometric Constraints for Encoding
and Synthesizing Airfoils [25.546237636065182]
Two deep learning-based generative schemes are proposed to capture the complexity of the design space while satisfying specific constraints.
The soft-constrained scheme generates airfoils with slight deviations from the expected geometric constraints, yet still converge to the reference airfoil.
The hard-constrained scheme produces airfoils with a wider range of geometric diversity while strictly adhering to the geometric constraints.
arXiv Detail & Related papers (2022-05-05T05:58:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.