LOD1 3D City Model from LiDAR: The Impact of Segmentation Accuracy on Quality of Urban 3D Modeling and Morphology Extraction
- URL: http://arxiv.org/abs/2505.14747v1
- Date: Tue, 20 May 2025 09:11:16 GMT
- Title: LOD1 3D City Model from LiDAR: The Impact of Segmentation Accuracy on Quality of Urban 3D Modeling and Morphology Extraction
- Authors: Fatemeh Chajaei, Hossein Bagheri,
- Abstract summary: This study focuses on assessing the potential of LiDAR data for accurate 3D building reconstruction at Level of Detail 1 (LOD1)<n>Four deep semantic segmentation models, U-Net, Attention U-Net, U-Net3+, and DeepLabV3+, were used, applying transfer learning to extract building footprints from LiDAR data.<n>The results showed that U-Net3+ and Attention U-Net outperformed the others, achieving IoU scores of 0.833 and 0.814, respectively.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Three-dimensional reconstruction of buildings, particularly at Level of Detail 1 (LOD1), plays a crucial role in various applications such as urban planning, urban environmental studies, and designing optimized transportation networks. This study focuses on assessing the potential of LiDAR data for accurate 3D building reconstruction at LOD1 and extracting morphological features from these models. Four deep semantic segmentation models, U-Net, Attention U-Net, U-Net3+, and DeepLabV3+, were used, applying transfer learning to extract building footprints from LiDAR data. The results showed that U-Net3+ and Attention U-Net outperformed the others, achieving IoU scores of 0.833 and 0.814, respectively. Various statistical measures, including maximum, range, mode, median, and the 90th percentile, were used to estimate building heights, resulting in the generation of 3D models at LOD1. As the main contribution of the research, the impact of segmentation accuracy on the quality of 3D building modeling and the accuracy of morphological features like building area and external wall surface area was investigated. The results showed that the accuracy of building identification (segmentation performance) significantly affects the 3D model quality and the estimation of morphological features, depending on the height calculation method. Overall, the UNet3+ method, utilizing the 90th percentile and median measures, leads to accurate height estimation of buildings and the extraction of morphological features.
Related papers
- Hi3DEval: Advancing 3D Generation Evaluation with Hierarchical Validity [78.7107376451476]
Hi3DEval is a hierarchical evaluation framework tailored for 3D generative content.<n>We extend texture evaluation beyond aesthetic appearance by explicitly assessing material realism.<n>We propose a 3D-aware automated scoring system based on hybrid 3D representations.
arXiv Detail & Related papers (2025-08-07T17:50:13Z) - E3D-Bench: A Benchmark for End-to-End 3D Geometric Foundation Models [78.1674905950243]
We present the first comprehensive benchmark for 3D geometric foundation models (GFMs)<n>GFMs directly predict dense 3D representations in a single feed-forward pass, eliminating the need for slow or unavailable precomputed camera parameters.<n>We evaluate 16 state-of-the-art GFMs, revealing their strengths and limitations across tasks and domains.<n>All code, evaluation scripts, and processed data will be publicly released to accelerate research in 3D spatial intelligence.
arXiv Detail & Related papers (2025-06-02T17:53:09Z) - Study of Dropout in PointPillars with 3D Object Detection [0.0]
3D object detection is critical for autonomous driving, leveraging deep learning techniques to interpret LiDAR data.
This study provides an analysis of enhancing the performance of PointPillars model under various dropout rates.
arXiv Detail & Related papers (2024-09-01T09:30:54Z) - Analyzing the impact of semantic LoD3 building models on image-based vehicle localization [0.1398098625978622]
This paper introduces a novel approach for car localization, leveraging image features that correspond with highly detailed semantic 3D building models.
The work assesses outcomes using Level of Detail 2 (LoD2) and Level of Detail 3 (LoD3) models, analyzing whether facade-enriched models yield superior accuracy.
arXiv Detail & Related papers (2024-07-31T08:33:41Z) - Estimate the building height at a 10-meter resolution based on Sentinel data [5.080045077714947]
This study established a set of spatial-spectral-temporal feature databases.
It combined SAR data provided by Sentinel-1, optical data provided by Sentinel-2, and shape data provided by building footprints.
The statistical indicators on the time scale are extracted to form a rich database of 160 features.
arXiv Detail & Related papers (2024-05-02T03:53:59Z) - FILP-3D: Enhancing 3D Few-shot Class-incremental Learning with Pre-trained Vision-Language Models [59.13757801286343]
Few-shot class-incremental learning aims to mitigate the catastrophic forgetting issue when a model is incrementally trained on limited data.<n>We introduce the FILP-3D framework with two novel components: the Redundant Feature Eliminator (RFE) for feature space misalignment and the Spatial Noise Compensator (SNC) for significant noise.
arXiv Detail & Related papers (2023-12-28T14:52:07Z) - Exploring and Improving the Spatial Reasoning Abilities of Large
Language Models [0.0]
Large Language Models (LLMs) represent formidable tools for sequence modeling.
We investigate the out-of-the-box performance of ChatGPT-3.5, ChatGPT-4 and Llama 2 7B models when confronted with 3D robotic trajectory data.
We introduce a novel prefix-based prompting mechanism, which yields a 33% improvement on the 3D trajectory data.
arXiv Detail & Related papers (2023-12-02T07:41:46Z) - Building3D: An Urban-Scale Dataset and Benchmarks for Learning Roof
Structures from Point Clouds [4.38301148531795]
Existing datasets for 3D modeling mainly focus on common objects such as furniture or cars.
We present a urban-scale dataset consisting of more than 160 thousands buildings along with corresponding point clouds, mesh and wire-frame models, covering 16 cities in Estonia about 998 Km2.
Experimental results indicate that Building3D has challenges of high intra-class variance, data imbalance and large-scale noises.
arXiv Detail & Related papers (2023-07-21T21:38:57Z) - Semi-supervised Learning from Street-View Images and OpenStreetMap for
Automatic Building Height Estimation [59.6553058160943]
We propose a semi-supervised learning (SSL) method of automatically estimating building height from Mapillary SVI and OpenStreetMap data.
The proposed method leads to a clear performance boosting in estimating building heights with a Mean Absolute Error (MAE) around 2.1 meters.
The preliminary result is promising and motivates our future work in scaling up the proposed method based on low-cost VGI data.
arXiv Detail & Related papers (2023-07-05T18:16:30Z) - Towards Multimodal Multitask Scene Understanding Models for Indoor
Mobile Agents [49.904531485843464]
In this paper, we discuss the main challenge: insufficient, or even no, labeled data for real-world indoor environments.
We describe MMISM (Multi-modality input Multi-task output Indoor Scene understanding Model) to tackle the above challenges.
MMISM considers RGB images as well as sparse Lidar points as inputs and 3D object detection, depth completion, human pose estimation, and semantic segmentation as output tasks.
We show that MMISM performs on par or even better than single-task models.
arXiv Detail & Related papers (2022-09-27T04:49:19Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
Graph Convolutional Networks (GCNs) have already demonstrated their powerful ability to model the irregular data.
We present a novel spatial-temporal GCN architecture which is defined via the Poincar'e geometry.
We evaluate our method on two current largest scale 3D datasets.
arXiv Detail & Related papers (2020-07-30T18:23:18Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
We propose a novel 3D object detection framework with dynamic information modeling.
Coarse predictions are generated in the first stage via a voxel-based region proposal network.
Experiments are conducted on the large-scale nuScenes 3D detection benchmark.
arXiv Detail & Related papers (2020-07-16T18:27:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.