論文の概要: CRAFT: Training-Free Cascaded Retrieval for Tabular QA
- arxiv url: http://arxiv.org/abs/2505.14984v1
- Date: Wed, 21 May 2025 00:09:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:58.7961
- Title: CRAFT: Training-Free Cascaded Retrieval for Tabular QA
- Title(参考訳): CRAFT: タブラルQAのための訓練不要カスケード検索
- Authors: Adarsh Singh, Kushal Raj Bhandari, Jianxi Gao, Soham Dan, Vivek Gupta,
- Abstract要約: TQA(Table Question Answering)は、大きなコーパスから関連するテーブルを取得して、自然言語クエリに応答する。
textbfCRAFT$は、まずスパース検索モデルを使用して候補テーブルのサブセットをフィルタリングするカスケード検索手法である。
textbfCRAFT$は、最先端(SOTA)スパース、密度、ハイブリッドレトリバーよりも優れた検索性能を実現する。
- 参考スコア(独自算出の注目度): 11.984180880537936
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Table Question Answering (TQA) involves retrieving relevant tables from a large corpus to answer natural language queries. Traditional dense retrieval models, such as DTR and ColBERT, not only incur high computational costs for large-scale retrieval tasks but also require retraining or fine-tuning on new datasets, limiting their adaptability to evolving domains and knowledge. In this work, we propose $\textbf{CRAFT}$, a cascaded retrieval approach that first uses a sparse retrieval model to filter a subset of candidate tables before applying more computationally expensive dense models and neural re-rankers. Our approach achieves better retrieval performance than state-of-the-art (SOTA) sparse, dense, and hybrid retrievers. We further enhance table representations by generating table descriptions and titles using Gemini Flash 1.5. End-to-end TQA results using various Large Language Models (LLMs) on NQ-Tables, a subset of the Natural Questions Dataset, demonstrate $\textbf{CRAFT}$ effectiveness.
- Abstract(参考訳): TQA(Table Question Answering)は、大きなコーパスから関連するテーブルを取得して、自然言語クエリに応答する。
DTRやColBERTのような従来の密度の高い検索モデルでは、大規模な検索タスクに高い計算コストがかかるだけでなく、新しいデータセットの再トレーニングや微調整も必要であり、ドメインや知識の進化への適応性を制限する。
本稿では,より計算コストの高い高密度モデルとニューラルリランカを適用する前に,まずスパース検索モデルを用いて候補テーブルのサブセットをフィルタリングするカスケード検索手法である$\textbf{CRAFT}$を提案する。
提案手法は, 最先端(SOTA)スパース, 密度, ハイブリッドレトリバーよりも高い検索性能を実現する。
Gemini Flash 1.5を使ってテーブル記述やタイトルを生成することで、テーブル表現をさらに強化します。
The Natural Questions DatasetのサブセットであるNQ-Tables上での様々なLarge Language Model(LLM)を用いたエンドツーエンドTQAの結果は、$\textbf{CRAFT}$の有効性を示す。
関連論文リスト
- GTR: Graph-Table-RAG for Cross-Table Question Answering [53.11230952572134]
テーブルコーパスをヘテロジニアスグラフに再構成するグラフテーブル-テーブル-RAG フレームワーク GTR を提案する。
GTRは、高いデプロイメント効率を維持しながら、より優れたクロステーブル質問応答性能を示し、実際の実用性を示している。
論文 参考訳(メタデータ) (2025-04-02T04:24:41Z) - Knowledge in Triples for LLMs: Enhancing Table QA Accuracy with Semantic Extraction [1.0968343822308813]
本稿では,表型データから直交三重項を抽出し,それを検索拡張生成(RAG)モデルに統合することにより,微調整GPT-3.5-turbo-0125モデルにより生成された応答の精度,コヒーレンス,コンテキスト的リッチ性を向上させる手法を提案する。
FeTaQAデータセットの既存のベースライン、特にSacre-BLEUとROUGEの指標に優れています。
論文 参考訳(メタデータ) (2024-09-21T16:46:15Z) - QTSumm: Query-Focused Summarization over Tabular Data [58.62152746690958]
人々は主に、データ分析を行うか、特定の質問に答えるためにテーブルをコンサルティングします。
そこで本研究では,テキスト生成モデルに人間的な推論を行なわなければならない,クエリ中心のテーブル要約タスクを新たに定義する。
このタスクには,2,934テーブル上の7,111の人間注釈付きクエリ-サマリーペアを含む,QTSummという新しいベンチマークを導入する。
論文 参考訳(メタデータ) (2023-05-23T17:43:51Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - OmniTab: Pretraining with Natural and Synthetic Data for Few-shot
Table-based Question Answering [106.73213656603453]
最小限のアノテーションによるテーブルベースのQAモデルを構築した。
本稿では、自然データと合成データの両方を消費する全能事前学習手法を提案する。
論文 参考訳(メタデータ) (2022-07-08T01:23:45Z) - Table Retrieval May Not Necessitate Table-specific Model Design [83.27735758203089]
テーブル検索のタスクに焦点をあてて、"テーブル固有のモデル設計はテーブル検索に必要か?
自然質問データセット (NQ-table) の表に基づく分析の結果, 70%以上の症例では構造が無視できる役割を担っていることがわかった。
次に、テーブル構造、すなわち補助列/カラム埋め込み、ハードアテンションマスク、ソフトリレーションに基づくアテンションバイアスを明示的にエンコードする3つのモジュールを実験する。
いずれも大きな改善は得られず、テーブル固有のモデル設計がテーブル検索に不要である可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-19T20:35:23Z) - End-to-End Table Question Answering via Retrieval-Augmented Generation [19.89730342792824]
本稿では、T-RAGというテーブルQAモデルを紹介し、非パラメトリックな高密度ベクトルインデックスをパラメトリックシーケンス・ツー・シーケンスモデルであるBARTと組み合わせて微調整し、応答トークンを生成する。
自然言語の問題があれば、T-RAGは統合パイプラインを使用してテーブルコーパスを自動で検索し、テーブルセルから正しい回答を直接見つけ出す。
論文 参考訳(メタデータ) (2022-03-30T23:30:16Z) - HiTab: A Hierarchical Table Dataset for Question Answering and Natural
Language Generation [35.73434495391091]
階層テーブルは、計算と意味論の暗黙の関係と同様に、階層的な索引付けによって既存の手法に挑戦する。
この研究は、階層テーブル上で質問応答(QA)と自然言語生成(NLG)を研究する研究コミュニティのための、自由でオープンなデータセットであるHiTabを提示する。
論文 参考訳(メタデータ) (2021-08-15T10:14:21Z) - Open Question Answering over Tables and Text [55.8412170633547]
オープンな質問応答(QA)では、質問に対する回答は、質問に対する回答を含む可能性のある文書を検索して分析することによって生成される。
ほとんどのオープンQAシステムは、構造化されていないテキストからのみ情報を取得することを検討している。
我々は,このタスクの性能を評価するために,新しい大規模データセット Open Table-and-Text Question Answering (OTT-QA) を提案する。
論文 参考訳(メタデータ) (2020-10-20T16:48:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。