Towards a Working Definition of Designing Generative User Interfaces
- URL: http://arxiv.org/abs/2505.15049v1
- Date: Wed, 21 May 2025 03:14:09 GMT
- Title: Towards a Working Definition of Designing Generative User Interfaces
- Authors: Kyungho Lee,
- Abstract summary: Generative UI is transforming interface design by facilitating AI-driven collaborative between designers and computational systems.<n>This study establishes a working definition of Generative UI through a multi-method qualitative approach.
- Score: 1.1603243575080535
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative UI is transforming interface design by facilitating AI-driven collaborative workflows between designers and computational systems. This study establishes a working definition of Generative UI through a multi-method qualitative approach, integrating insights from a systematic literature review of 127 publications, expert interviews with 18 participants, and analyses of 12 case studies. Our findings identify five core themes that position Generative UI as an iterative and co-creative process. We highlight emerging design models, including hybrid creation, curation-based workflows, and AI-assisted refinement strategies. Additionally, we examine ethical challenges, evaluation criteria, and interaction models that shape the field. By proposing a conceptual foundation, this study advances both theoretical discourse and practical implementation, guiding future HCI research toward responsible and effective generative UI design practices.
Related papers
- Human-AI Co-Creation: A Framework for Collaborative Design in Intelligent Systems [0.6526824510982802]
This paper explores the emergent paradigm of human-AI co-creation, where AI is not merely used for automation or efficiency gains, but actively participates in ideation, visual conceptualization, and decision-making.<n>Specifically, we investigate the use of large language models (LLMs) like GPT-4 and multimodal diffusion models such as Stable Diffusion as creative agents that engage designers in iterative cycles of proposal, critique, and revision.
arXiv Detail & Related papers (2025-07-22T04:29:33Z) - Creativity in LLM-based Multi-Agent Systems: A Survey [56.25583236738877]
Large language model (LLM)-driven multi-agent systems (MAS) are transforming how humans and AIs collaboratively generate ideas and artifacts.<n>This is the first survey dedicated to creativity in MAS.<n>We focus on text and image generation tasks, and present: (1) a taxonomy of agent proactivity and persona design; (2) an overview of generation techniques, including divergent exploration, iterative refinement, and collaborative synthesis, as well as relevant datasets and evaluation metrics; and (3) a discussion of key challenges, such as inconsistent evaluation standards, insufficient bias mitigation, coordination conflicts, and the lack of unified benchmarks.
arXiv Detail & Related papers (2025-05-27T12:36:14Z) - Evaluating Machine Expertise: How Graduate Students Develop Frameworks for Assessing GenAI Content [1.967444231154626]
This paper examines how graduate students develop frameworks for evaluating machine-generated expertise in web-based interactions with large language models (LLMs)<n>Our findings reveal that students construct evaluation frameworks shaped by three main factors: professional identity, verification capabilities, and system navigation experience.
arXiv Detail & Related papers (2025-04-24T22:24:14Z) - GUI Agents: A Survey [129.94551809688377]
Graphical User Interface (GUI) agents, powered by Large Foundation Models, have emerged as a transformative approach to automating human-computer interaction.<n>Motivated by the growing interest and fundamental importance of GUI agents, we provide a comprehensive survey that categorizes their benchmarks, evaluation metrics, architectures, and training methods.
arXiv Detail & Related papers (2024-12-18T04:48:28Z) - Survey of User Interface Design and Interaction Techniques in Generative AI Applications [79.55963742878684]
We aim to create a compendium of different user-interaction patterns that can be used as a reference for designers and developers alike.
We also strive to lower the entry barrier for those attempting to learn more about the design of generative AI applications.
arXiv Detail & Related papers (2024-10-28T23:10:06Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - A Novel Idea Generation Tool using a Structured Conversational AI (CAI) System [0.0]
This paper presents a novel conversational AI-enabled active ideation interface as a creative idea-generation tool to assist novice designers.
It is a dynamic, interactive, and contextually responsive approach, actively involving a large language model (LLM) from the domain of natural language processing (NLP) in artificial intelligence (AI)
Integrating such AI models with ideation creates what we refer to as an Active Ideation scenario, which helps foster continuous dialogue-based interaction, context-sensitive conversation, and prolific idea generation.
arXiv Detail & Related papers (2024-09-09T16:02:27Z) - Prototyping with Prompts: Emerging Approaches and Challenges in Generative AI Design for Collaborative Software Teams [2.237039275844699]
Generative AI models are increasingly being integrated into human task, enabling the production of expressive content.<n>Unlike traditional human-AI design methods, the new approach to designing generative capabilities focuses heavily on prompt engineering strategies.<n>Our findings highlight emerging practices and role shifts in AI system prototyping among multistakeholder teams.
arXiv Detail & Related papers (2024-02-27T17:56:10Z) - The Participatory Turn in AI Design: Theoretical Foundations and the
Current State of Practice [64.29355073494125]
This article aims to ground what we dub the "participatory turn" in AI design by synthesizing existing theoretical literature on participation.
We articulate empirical findings concerning the current state of participatory practice in AI design based on an analysis of recently published research and semi-structured interviews with 12 AI researchers and practitioners.
arXiv Detail & Related papers (2023-10-02T05:30:42Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.