Non-rigid Motion Correction for MRI Reconstruction via Coarse-To-Fine Diffusion Models
- URL: http://arxiv.org/abs/2505.15057v3
- Date: Thu, 03 Jul 2025 04:39:51 GMT
- Title: Non-rigid Motion Correction for MRI Reconstruction via Coarse-To-Fine Diffusion Models
- Authors: Frederic Wang, Jonathan I. Tamir,
- Abstract summary: Motion artifacts can compromise diagnostic utility, particularly for dynamic imaging.<n>We propose a novel alternating minimization framework that leverages a bespoke diffusion model to jointly reconstruct and correct motion-corrupted k-space data.<n>We demonstrate the performance of our approach on both real-world cine cardiac MRI datasets and complex simulated rigid and non-rigid deformations.
- Score: 2.8189656701789816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Magnetic Resonance Imaging (MRI) is highly susceptible to motion artifacts due to the extended acquisition times required for k-space sampling. These artifacts can compromise diagnostic utility, particularly for dynamic imaging. We propose a novel alternating minimization framework that leverages a bespoke diffusion model to jointly reconstruct and correct non-rigid motion-corrupted k-space data. The diffusion model uses a coarse-to-fine denoising strategy to capture large overall motion and reconstruct the lower frequencies of the image first, providing a better inductive bias for motion estimation than that of standard diffusion models. We demonstrate the performance of our approach on both real-world cine cardiac MRI datasets and complex simulated rigid and non-rigid deformations, even when each motion state is undersampled by a factor of 64x. Additionally, our method is agnostic to sampling patterns, anatomical variations, and MRI scanning protocols, as long as some low frequency components are sampled during each motion state.
Related papers
- Assessing the use of Diffusion models for motion artifact correction in brain MRI [0.6554326244334868]
We critically evaluate the use of diffusion models for correcting motion artifacts in 2D brain MRI scans.<n>We compare a diffusion model-based approach with state-of-the-art methods consisting of Unets trained in a supervised fashion on motion-affected images.<n>Our findings reveal mixed results: diffusion models can produce accurate predictions or generate harmful hallucinations in this context.
arXiv Detail & Related papers (2025-02-03T14:56:48Z) - Motion Artifact Removal in Pixel-Frequency Domain via Alternate Masks and Diffusion Model [58.694932010573346]
Motion artifacts present in magnetic resonance imaging (MRI) can seriously interfere with clinical diagnosis.<n>We propose a novel unsupervised purification method which leverages pixel-frequency information of noisy MRI images to guide a pre-trained diffusion model to recover clean MRI images.
arXiv Detail & Related papers (2024-12-10T15:25:18Z) - A Generative Diffusion Model to Solve Inverse Problems for Robust in-NICU Neonatal MRI [2.508200203858861]
We present the first acquisition-agnostic diffusion generative model for Magnetic Resonance Imaging (MRI) in the neonatal intensive care unit (NICU)<n>In-NICU MRI scanners leverage permanent magnets at lower field-strengths for non-invasive assessment of potential brain abnormalities.<n>In this setting, training data sizes are small and intrinsically suffer from low signal-to-noise ratio (SNR)
arXiv Detail & Related papers (2024-10-28T23:12:09Z) - A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
We propose a unified MRI reconstruction model robust to various measurement undersampling patterns and image resolutions.<n>Our model improves SSIM by 11% and PSNR by 4 dB over a state-of-the-art CNN (End-to-End VarNet) with 600$times$ faster inference than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Implicit neural representation (INR) has emerged as a powerful paradigm for solving inverse problems.
Our proposed framework can be a generalizable framework to solve inverse problems in other medical imaging tasks.
arXiv Detail & Related papers (2024-07-03T01:37:56Z) - Attention-aware non-rigid image registration for accelerated MR imaging [10.47044784972188]
We introduce an attention-aware deep learning-based framework that can perform non-rigid pairwise registration for fully sampled and accelerated MRI.
We extract local visual representations to build similarity maps between the registered image pairs at multiple resolution levels.
We demonstrate that our model derives reliable and consistent motion fields across different sampling trajectories.
arXiv Detail & Related papers (2024-04-26T14:25:07Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Annealed Score-Based Diffusion Model for MR Motion Artifact Reduction [37.41561581618164]
Motion artifact reduction is one of the important research topics in MR imaging.
We present an annealed score-based diffusion model for MRI motion artifact reduction.
Experimental results verify that the proposed method successfully reduces both simulated and in vivo motion artifacts.
arXiv Detail & Related papers (2023-01-08T12:16:08Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.