A Generative Diffusion Model to Solve Inverse Problems for Robust in-NICU Neonatal MRI
- URL: http://arxiv.org/abs/2410.21602v2
- Date: Wed, 21 May 2025 17:36:11 GMT
- Title: A Generative Diffusion Model to Solve Inverse Problems for Robust in-NICU Neonatal MRI
- Authors: Yamin Arefeen, Brett Levac, Jonathan I. Tamir,
- Abstract summary: We present the first acquisition-agnostic diffusion generative model for Magnetic Resonance Imaging (MRI) in the neonatal intensive care unit (NICU)<n>In-NICU MRI scanners leverage permanent magnets at lower field-strengths for non-invasive assessment of potential brain abnormalities.<n>In this setting, training data sizes are small and intrinsically suffer from low signal-to-noise ratio (SNR)
- Score: 2.508200203858861
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the first acquisition-agnostic diffusion generative model for Magnetic Resonance Imaging (MRI) in the neonatal intensive care unit (NICU) to solve a range of inverse problems for shortening scan time and improving motion robustness. In-NICU MRI scanners leverage permanent magnets at lower field-strengths (i.e., below 1.5 Tesla) for non-invasive assessment of potential brain abnormalities during the critical phase of early live development, but suffer from long scan times and motion artifacts. In this setting, training data sizes are small and intrinsically suffer from low signal-to-noise ratio (SNR). This work trains a diffusion probabilistic generative model using such a real-world training dataset of clinical neonatal MRI by applying several novel signal processing and machine learning methods to handle the low SNR and low quantity of data. The model is then used as a statistical image prior to solve various inverse problems at inference time without requiring any retraining. Experiments demonstrate the generative model's utility for three real-world applications of neonatal MRI: accelerated reconstruction, motion correction, and super-resolution.
Related papers
- Diffusion Probabilistic Generative Models for Accelerated, in-NICU Permanent Magnet Neonatal MRI [2.1400895396229913]
Permanent magnet scanners operating in the neonatal intensive care unit (NICU) facilitate MRI of sick infants.<n>These scanners have long scan times due to lower signal-to-noise ratios (SNR) and limited receive coils.<n>This work accelerates in-NICU MRI with diffusion probabilistic generative models by developing a training pipeline.
arXiv Detail & Related papers (2025-05-21T20:05:45Z) - Non-rigid Motion Correction for MRI Reconstruction via Coarse-To-Fine Diffusion Models [2.8189656701789816]
Motion artifacts can compromise diagnostic utility, particularly for dynamic imaging.<n>We propose a novel alternating minimization framework that leverages a bespoke diffusion model to jointly reconstruct and correct motion-corrupted k-space data.<n>We demonstrate the performance of our approach on both real-world cine cardiac MRI datasets and complex simulated rigid and non-rigid deformations.
arXiv Detail & Related papers (2025-05-21T03:27:21Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.
We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Implicit neural representation (INR) has emerged as a powerful paradigm for solving inverse problems.
Our proposed framework can be a generalizable framework to solve inverse problems in other medical imaging tasks.
arXiv Detail & Related papers (2024-07-03T01:37:56Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Noise Level Adaptive Diffusion Model for Robust Reconstruction of Accelerated MRI [34.361078452552945]
Real-world MRI acquisitions already contain inherent noise due to thermal fluctuations.
We propose a posterior sampling strategy with a novel NoIse Level Adaptive Data Consistency (Nila-DC) operation.
Our method surpasses the state-of-the-art MRI reconstruction methods, and is highly robust against various noise levels.
arXiv Detail & Related papers (2024-03-08T12:07:18Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
Cycle Consistent Generative Adversarial Network (GAN) is implemented to yield high-field, high resolution, high signal-to-noise ratio (SNR) Magnetic Resonance Imaging (MRI) images.
Images were utilized to train a Denoising Autoencoder (DAE) and a Cycle-GAN, with paired and unpaired cases.
This work demonstrates the use of a generative deep learning model that can outperform classical DAEs to improve low-field MRI images and does not require image pairs.
arXiv Detail & Related papers (2023-07-12T00:01:00Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - CL-MRI: Self-Supervised Contrastive Learning to Improve the Accuracy of Undersampled MRI Reconstruction [25.078280843551322]
We introduce a self-supervised pretraining procedure using contrastive learning to improve the accuracy of undersampled MRI reconstruction.
Our experiments demonstrate improved reconstruction accuracy across a range of acceleration factors and datasets.
arXiv Detail & Related papers (2023-06-01T10:29:58Z) - Generative AI for Rapid Diffusion MRI with Improved Image Quality,
Reliability and Generalizability [3.6119644566822484]
We employ a Swin UNEt Transformers model, trained on augmented Human Connectome Project data, to perform generalized denoising of dMRI.
We demonstrate super-resolution with artificially downsampled HCP data in normal adult volunteers.
We exceed current state-of-the-art denoising methods in accuracy and test-retest reliability of rapid diffusion tensor imaging requiring only 90 seconds of scan time.
arXiv Detail & Related papers (2023-03-10T03:39:23Z) - DDM$^2$: Self-Supervised Diffusion MRI Denoising with Generative
Diffusion Models [0.3149883354098941]
We propose a self-supervised denoising method for MRI denoising using diffusion denoising generative models.
Our framework integrates statistic-based denoising theory into diffusion models and performs denoising through conditional generation.
arXiv Detail & Related papers (2023-02-06T18:56:39Z) - A Path Towards Clinical Adaptation of Accelerated MRI [0.0]
We explore augmentations to neural network MRI image reconstructors to enhance their clinical relevancy.
We demonstrate that training reconstructors on MR signal data with variable acceleration factors can improve their average performance during a clinical patient scan by up to $2%$.
arXiv Detail & Related papers (2022-08-26T18:34:41Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
We propose a convolutional long short-term memory (Conv-LSTM) based recurrent neural network (RNN), or ConvLR, to reconstruct interventional images with golden-angle radial sampling.
The proposed algorithm has the potential to achieve real-time i-MRI for DBS and can be used for general purpose MR-guided intervention.
arXiv Detail & Related papers (2022-03-28T14:03:45Z) - Interpretability Aware Model Training to Improve Robustness against
Out-of-Distribution Magnetic Resonance Images in Alzheimer's Disease
Classification [8.050897403457995]
We propose an interpretability aware adversarial training regime to improve robustness against out-of-distribution samples originating from different MRI hardware.
We present preliminary results showing promising performance on out-of-distribution samples.
arXiv Detail & Related papers (2021-11-15T04:42:47Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
We are able to track changes in cerebral blood volume over time and identify spontaneous arterial dilations that propagate towards the pial surface.
This new imaging capability is a promising step towards characterizing the hemodynamic response function upon which functional magnetic resonance imaging (fMRI) is based.
arXiv Detail & Related papers (2020-01-14T22:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.