StepSearch: Igniting LLMs Search Ability via Step-Wise Proximal Policy Optimization
- URL: http://arxiv.org/abs/2505.15107v2
- Date: Mon, 26 May 2025 04:44:21 GMT
- Title: StepSearch: Igniting LLMs Search Ability via Step-Wise Proximal Policy Optimization
- Authors: Ziliang Wang, Xuhui Zheng, Kang An, Cijun Ouyang, Jialu Cai, Yuhang Wang, Yichao Wu,
- Abstract summary: StepSearch is a framework for search LLMs that trained with step-wise proximal policy optimization method.<n>It consists of richer and more detailed intermediate search rewards and token-level process supervision based on information gain and redundancy penalties.<n>On standard multi-hop QA benchmarks, it significantly outperforms global-reward baselines, achieving 11.2% and 4.2% absolute improvements for 3B and 7B models.
- Score: 14.931231544839687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient multi-hop reasoning requires Large Language Models (LLMs) based agents to acquire high-value external knowledge iteratively. Previous work has explored reinforcement learning (RL) to train LLMs to perform search-based document retrieval, achieving notable improvements in QA performance, but underperform on complex, multi-hop QA resulting from the sparse rewards from global signal only. To address this gap in existing research, we introduce StepSearch, a framework for search LLMs that trained with step-wise proximal policy optimization method. It consists of richer and more detailed intermediate search rewards and token-level process supervision based on information gain and redundancy penalties to better guide each search step. We constructed a fine-grained question-answering dataset containing sub-question-level search trajectories based on open source datasets through a set of data pipeline method. On standard multi-hop QA benchmarks, it significantly outperforms global-reward baselines, achieving 11.2% and 4.2% absolute improvements for 3B and 7B models over various search with RL baselines using only 19k training data, demonstrating the effectiveness of fine-grained, stepwise supervision in optimizing deep search LLMs. Our code will be released on https://github.com/Zillwang/StepSearch.
Related papers
- MMSearch-R1: Incentivizing LMMs to Search [49.889749277236376]
We present MMSearch-R1, the first end-to-end reinforcement learning framework that enables on-demand, multi-turn search in real-world Internet environments.<n>Our framework integrates both image and text search tools, allowing the model to reason about when and how to invoke them guided by an outcome-based reward with a search penalty.
arXiv Detail & Related papers (2025-06-25T17:59:42Z) - R-Search: Empowering LLM Reasoning with Search via Multi-Reward Reinforcement Learning [0.8388591755871735]
R-Search is a reinforcement learning framework for Reasoning-Search integration.<n>It guides large language models to autonomously execute multi-step reasoning with deep search interaction.<n>R-Search learns optimal reasoning search interaction trajectories via multi-reward signals.
arXiv Detail & Related papers (2025-06-04T17:29:22Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - ZeroSearch: Incentivize the Search Capability of LLMs without Searching [69.55482019211597]
We introduce ZeroSearch, a framework that incentivizes the capabilities of large language models to use a real search engine with simulated searches during training.<n>Our approach begins with lightweight supervised fine-tuning to transform the LLM into a retrieval module capable of generating both useful and noisy documents.
arXiv Detail & Related papers (2025-05-07T17:30:22Z) - Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning [50.419872452397684]
Search-R1 is an extension of reinforcement learning for reasoning frameworks.<n>It generates search queries during step-by-step reasoning with real-time retrieval.<n>It improves performance by 41% (Qwen2.5-7B) and 20% (Qwen2.5-3B) over various RAG baselines.
arXiv Detail & Related papers (2025-03-12T16:26:39Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.