Few-Shot Adversarial Low-Rank Fine-Tuning of Vision-Language Models
- URL: http://arxiv.org/abs/2505.15130v1
- Date: Wed, 21 May 2025 05:35:24 GMT
- Title: Few-Shot Adversarial Low-Rank Fine-Tuning of Vision-Language Models
- Authors: Sajjad Ghiasvand, Haniyeh Ehsani Oskouie, Mahnoosh Alizadeh, Ramtin Pedarsani,
- Abstract summary: Adrial training is the most effective strategy for improving model robustness in PEFT.<n>We propose AdvCLIP-LoRA, the first algorithm designed to enhance adversarial CLIP models fine-tuned with LoRA in few settings.
- Score: 13.754960315253014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-Language Models (VLMs) such as CLIP have shown remarkable performance in cross-modal tasks through large-scale contrastive pre-training. To adapt these large transformer-based models efficiently for downstream tasks, Parameter-Efficient Fine-Tuning (PEFT) techniques like LoRA have emerged as scalable alternatives to full fine-tuning, especially in few-shot scenarios. However, like traditional deep neural networks, VLMs are highly vulnerable to adversarial attacks, where imperceptible perturbations can significantly degrade model performance. Adversarial training remains the most effective strategy for improving model robustness in PEFT. In this work, we propose AdvCLIP-LoRA, the first algorithm designed to enhance the adversarial robustness of CLIP models fine-tuned with LoRA in few-shot settings. Our method formulates adversarial fine-tuning as a minimax optimization problem and provides theoretical guarantees for convergence under smoothness and nonconvex-strong-concavity assumptions. Empirical results across eight datasets using ViT-B/16 and ViT-B/32 models show that AdvCLIP-LoRA significantly improves robustness against common adversarial attacks (e.g., FGSM, PGD), without sacrificing much clean accuracy. These findings highlight AdvCLIP-LoRA as a practical and theoretically grounded approach for robust adaptation of VLMs in resource-constrained settings.
Related papers
- Communication-Efficient Wireless Federated Fine-Tuning for Large-Scale AI Models [13.742950928229078]
Low-Rank Adaptation (LoRA) addresses these issues by training compact, low-rank matrices instead of fully fine-tuning large models.<n>This paper introduces a wireless federated LoRA fine-tuning framework that optimize both learning performance and communication efficiency.
arXiv Detail & Related papers (2025-05-01T06:15:38Z) - R-TPT: Improving Adversarial Robustness of Vision-Language Models through Test-Time Prompt Tuning [97.49610356913874]
We propose a robust test-time prompt tuning (R-TPT) for vision-language models (VLMs)<n>R-TPT mitigates the impact of adversarial attacks during the inference stage.<n>We introduce a plug-and-play reliability-based weighted ensembling strategy to strengthen the defense.
arXiv Detail & Related papers (2025-04-15T13:49:31Z) - Robust Federated Finetuning of LLMs via Alternating Optimization of LoRA [14.789886179102425]
BERT-Efficient Fine-Tuning (PEFT) methods like Low-Rank Adaptation (LoRA) optimize federated training by reducing computational and communication costs.<n>We propose RoLoRA, a federated framework using alternating optimization to fine-tune LoRA adapters.
arXiv Detail & Related papers (2025-02-03T19:02:00Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks.
Low-Rank Adaptation (LoRA) has emerged as a promising solution, but there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum.
We propose eXtreme Gradient Boosting LoRA, a novel framework that bridges this gap by leveraging the power of ensemble learning.
arXiv Detail & Related papers (2024-10-25T17:07:13Z) - A Hybrid Defense Strategy for Boosting Adversarial Robustness in Vision-Language Models [9.304845676825584]
We propose a novel adversarial training framework that integrates multiple attack strategies and advanced machine learning techniques.
Experiments conducted on real-world datasets, including CIFAR-10 and CIFAR-100, demonstrate that the proposed method significantly enhances model robustness.
arXiv Detail & Related papers (2024-10-18T23:47:46Z) - Randomized Asymmetric Chain of LoRA: The First Meaningful Theoretical Framework for Low-Rank Adaptation [58.288682735160585]
Low-Rank Adaptation (LoRA) is a popular technique for finetuning models.
LoRA often under performs when compared to full- parameter fine-tuning.
We present a framework that rigorously analyzes the adaptation rates of LoRA methods.
arXiv Detail & Related papers (2024-10-10T18:51:53Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Expressive and Generalizable Low-rank Adaptation for Large Models via Slow Cascaded Learning [55.5715496559514]
LoRA Slow Cascade Learning (LoRASC) is an innovative technique designed to enhance LoRA's expressiveness and generalization capabilities.
Our approach augments expressiveness through a cascaded learning strategy that enables a mixture-of-low-rank adaptation, thereby increasing the model's ability to capture complex patterns.
arXiv Detail & Related papers (2024-07-01T17:28:59Z) - FullLoRA-AT: Efficiently Boosting the Robustness of Pretrained Vision
Transformers [61.48709409150777]
Vision Transformer (ViT) model has gradually become mainstream in various computer vision tasks.
Existing large models tend to prioritize performance during training, potentially neglecting the robustness.
We develop a novel LNLoRA module, incorporating a learnable layer normalization before the conventional LoRA module.
We propose the FullLoRA-AT framework by integrating the learnable LNLoRA modules into all key components of ViT-based models.
arXiv Detail & Related papers (2024-01-03T14:08:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.