Prolonged Reasoning Is Not All You Need: Certainty-Based Adaptive Routing for Efficient LLM/MLLM Reasoning
- URL: http://arxiv.org/abs/2505.15154v1
- Date: Wed, 21 May 2025 06:20:17 GMT
- Title: Prolonged Reasoning Is Not All You Need: Certainty-Based Adaptive Routing for Efficient LLM/MLLM Reasoning
- Authors: Jinghui Lu, Haiyang Yu, Siliang Xu, Shiwei Ran, Guozhi Tang, Siqi Wang, Bin Shan, Teng Fu, Hao Feng, Jingqun Tang, Han Wang, Can Huang,
- Abstract summary: Excessive reliance on chain-of-thought (CoT) reasoning can impair model performance.<n>We propose Certainty-based Adaptive Reasoning (CAR)<n>CAR switches between short answers and long-form reasoning based on the model perplexity.
- Score: 27.498043430208085
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recent advancements in reasoning have significantly enhanced the capabilities of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) across diverse tasks. However, excessive reliance on chain-of-thought (CoT) reasoning can impair model performance and brings unnecessarily lengthened outputs, reducing efficiency. Our work reveals that prolonged reasoning does not universally improve accuracy and even degrade performance on simpler tasks. To address this, we propose Certainty-based Adaptive Reasoning (CAR), a novel framework that dynamically switches between short answers and long-form reasoning based on the model perplexity. CAR first generates a short answer and evaluates its perplexity, triggering reasoning only when the model exhibits low confidence (i.e., high perplexity). Experiments across diverse multimodal VQA/KIE benchmarks and text reasoning datasets show that CAR outperforms both short-answer and long-form reasoning approaches, striking an optimal balance between accuracy and efficiency.
Related papers
- Don't Overthink It: A Survey of Efficient R1-style Large Reasoning Models [49.598776427454176]
Large Reasoning Models (LRMs) have gradually become a research hotspot due to their outstanding performance in handling complex tasks.<n>However, with the widespread application of these models, the problem of overthinking has gradually emerged.<n>Various efficient reasoning methods have been proposed, aiming to reduce the length of reasoning paths without compromising model performance and reasoning capability.
arXiv Detail & Related papers (2025-08-04T06:54:31Z) - Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement [101.77467538102924]
Large reasoning models (LRMs) exhibit overthinking, which hinders efficiency and inflates inference cost.<n>We propose two lightweight methods to enhance LRM efficiency.<n>First, we introduce Efficiency Steering, a training-free activation steering technique that modulates reasoning behavior via a single direction.<n>Second, we develop Self-Rewarded Efficiency RL, a reinforcement learning framework that dynamically balances task accuracy and brevity.
arXiv Detail & Related papers (2025-06-18T17:18:12Z) - AutoL2S: Auto Long-Short Reasoning for Efficient Large Language Models [56.063571989395946]
The reasoning-capable large language models (LLMs) demonstrate strong performance on complex reasoning tasks.<n>Recent approaches attempt to address this challenge by manually deciding when to apply long or short reasoning.<n>We propose Auto Long-Short Reasoning (AutoL2S), a dynamic and model-agnostic framework that enables LLMs to dynamically compress their generated reasoning path.
arXiv Detail & Related papers (2025-05-28T17:59:53Z) - Think or Not? Exploring Thinking Efficiency in Large Reasoning Models via an Information-Theoretic Lens [51.90059610606049]
This paper revisits the efficiency of such reasoning processes through an information-theoretic lens.<n>We propose two metrics, InfoBias and InfoGain, to quantify divergence from ideal reasoning paths and stepwise information contribution.<n>Motivated by these findings, we introduce an entropy-based Adaptive Think strategy that dynamically halts reasoning once confidence is sufficiently high.
arXiv Detail & Related papers (2025-05-23T13:38:56Z) - Ada-R1: Hybrid-CoT via Bi-Level Adaptive Reasoning Optimization [86.56120216550232]
We propose a novel two-stage framework for adaptive and efficient reasoning.<n>First, we construct a hybrid reasoning model by merging long and short CoT models.<n>Second, we apply bi-level preference training to guide the model to select suitable reasoning styles.
arXiv Detail & Related papers (2025-04-30T14:01:45Z) - ShorterBetter: Guiding Reasoning Models to Find Optimal Inference Length for Efficient Reasoning [1.0416697066889342]
We propose a simple yet effective reinforcement learning method that enables reasoning models to learn their own optimal CoT lengths without manual supervision.<n>ShorterBetter achieves 50%-80% reduction in output lengths in both in-domain and out-of-domain reasoning tasks.<n>Our reasoning trace analysis shows that ShorterBetter refines the structure of the reasoning traces by reducing unnecessary repetition, excessive self-verification, and over-exploration of alternatives.
arXiv Detail & Related papers (2025-04-30T07:04:19Z) - Short-Path Prompting in LLMs: Analyzing Reasoning Instability and Solutions for Robust Performance [33.16322104912836]
Large language models' (LLMs) reasoning is largely due to the chain-of-thought (CoT) approaches.<n>LLMs are instruction-tuned to provide long and detailed CoT pathways when responding to reasoning-related questions.<n>Human beings are naturally cognitive misers and will prompt language models to give rather short responses.
arXiv Detail & Related papers (2025-04-13T14:12:14Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.<n>Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - When More is Less: Understanding Chain-of-Thought Length in LLMs [53.77747102201451]
Chain-of-thought (CoT) reasoning enhances the multi-step reasoning capabilities of large language models (LLMs)<n>However, for most models and tasks, does an increase in CoT length consistently lead to improved reasoning accuracy?<n>In this paper, we observe a nuanced relationship: as the number of reasoning steps increases, performance initially improves but eventually decreases.
arXiv Detail & Related papers (2025-02-11T05:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.