AutoL2S: Auto Long-Short Reasoning for Efficient Large Language Models
- URL: http://arxiv.org/abs/2505.22662v1
- Date: Wed, 28 May 2025 17:59:53 GMT
- Title: AutoL2S: Auto Long-Short Reasoning for Efficient Large Language Models
- Authors: Feng Luo, Yu-Neng Chuang, Guanchu Wang, Hoang Anh Duy Le, Shaochen Zhong, Hongyi Liu, Jiayi Yuan, Yang Sui, Vladimir Braverman, Vipin Chaudhary, Xia Hu,
- Abstract summary: The reasoning-capable large language models (LLMs) demonstrate strong performance on complex reasoning tasks.<n>Recent approaches attempt to address this challenge by manually deciding when to apply long or short reasoning.<n>We propose Auto Long-Short Reasoning (AutoL2S), a dynamic and model-agnostic framework that enables LLMs to dynamically compress their generated reasoning path.
- Score: 56.063571989395946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The reasoning-capable large language models (LLMs) demonstrate strong performance on complex reasoning tasks but often suffer from overthinking, generating unnecessarily long chain-of-thought (CoT) reasoning paths for easy reasoning questions, thereby increasing inference cost and latency. Recent approaches attempt to address this challenge by manually deciding when to apply long or short reasoning. However, they lack the flexibility to adapt CoT length dynamically based on question complexity. In this paper, we propose Auto Long-Short Reasoning (AutoL2S), a dynamic and model-agnostic framework that enables LLMs to dynamically compress their generated reasoning path based on the complexity of the reasoning question. AutoL2S enables a learned paradigm, in which LLMs themselves can decide when longer reasoning is necessary and when shorter reasoning suffices, by training on data annotated with our proposed method, which includes both long and short CoT paths and a special <EASY> token. We then use <EASY> token to indicate when the model can skip generating lengthy CoT reasoning. This proposed annotation strategy can enhance the LLMs' ability to generate shorter CoT reasoning paths with improved quality after training. Extensive evaluation results show that AutoL2S reduces the length of reasoning generation by up to 57% without compromising performance, demonstrating the effectiveness of AutoL2S for scalable and efficient LLM reasoning.
Related papers
- ReCUT: Balancing Reasoning Length and Accuracy in LLMs via Stepwise Trails and Preference Optimization [16.51303604678232]
Reasoning Compression ThroUgh Stepwise Trials (ReCUT) is a novel method aimed at balancing the accuracy and length of reasoning trajectory.<n> Experimental results across multiple math reasoning datasets and backbone models demonstrate that ReCUT significantly reduces reasoning lengths by approximately 30-50%.
arXiv Detail & Related papers (2025-06-12T15:43:01Z) - Adaptive Deep Reasoning: Triggering Deep Thinking When Needed [28.575411507835973]
Large language models (LLMs) have shown impressive capabilities in handling complex tasks through long-chain reasoning.<n>We propose a novel approach that autonomously switches between short and long-chain reasoning chains based on problem complexity.<n>This advancement enhances the practicality of reasoning in large language models for real-world applications.
arXiv Detail & Related papers (2025-05-26T15:08:51Z) - Efficient Long CoT Reasoning in Small Language Models [26.579760423359673]
It is challenging to directly train small language models (SLMs) to emerge long chain-of-thought (CoT) reasoning steps.<n>We propose a simple-yet-effective method to prune unnecessary steps in long CoT, and then employ an on-policy method for the SLM itself to curate valid and useful long CoT training data.
arXiv Detail & Related papers (2025-05-24T00:22:52Z) - Prolonged Reasoning Is Not All You Need: Certainty-Based Adaptive Routing for Efficient LLM/MLLM Reasoning [27.498043430208085]
Excessive reliance on chain-of-thought (CoT) reasoning can impair model performance.<n>We propose Certainty-based Adaptive Reasoning (CAR)<n>CAR switches between short answers and long-form reasoning based on the model perplexity.
arXiv Detail & Related papers (2025-05-21T06:20:17Z) - Thinkless: LLM Learns When to Think [57.857534644932194]
Reasoning Language Models, capable of extended chain-of-thought reasoning, have demonstrated remarkable performance on tasks requiring complex logical inference.<n>We propose Thinkless, a learnable framework that empowers an LLM to adaptively select between short-form and long-form reasoning.<n>On several benchmarks such as Minerva Algebra, MATH-500, and GSM8K, Thinkless is able to reduce the usage of long-chain thinking by 50% - 90%.
arXiv Detail & Related papers (2025-05-19T17:24:16Z) - Between Underthinking and Overthinking: An Empirical Study of Reasoning Length and correctness in LLMs [52.405085773954596]
We find that large language models (LLMs) tend to overthink simple problems, generating unnecessarily long outputs, and underthink harder ones.<n>This indicates that models might misjudge problem difficulty and fail to calibrate their response length appropriately.<n> Experiments show that the generation length can be significantly reduced while maintaining acceptable accuracy.
arXiv Detail & Related papers (2025-04-30T18:48:06Z) - Ada-R1: Hybrid-CoT via Bi-Level Adaptive Reasoning Optimization [86.56120216550232]
We propose a novel two-stage framework for adaptive and efficient reasoning.<n>First, we construct a hybrid reasoning model by merging long and short CoT models.<n>Second, we apply bi-level preference training to guide the model to select suitable reasoning styles.
arXiv Detail & Related papers (2025-04-30T14:01:45Z) - Short-Path Prompting in LLMs: Analyzing Reasoning Instability and Solutions for Robust Performance [33.16322104912836]
Large language models' (LLMs) reasoning is largely due to the chain-of-thought (CoT) approaches.<n>LLMs are instruction-tuned to provide long and detailed CoT pathways when responding to reasoning-related questions.<n>Human beings are naturally cognitive misers and will prompt language models to give rather short responses.
arXiv Detail & Related papers (2025-04-13T14:12:14Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.<n>Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - Unlocking General Long Chain-of-Thought Reasoning Capabilities of Large Language Models via Representation Engineering [59.34894142132706]
Existing work finds that the capability of long CoT reasoning can be efficiently elicited by tuning on only a few examples.<n>This motivates us to investigate whether long CoT reasoning is a general capability for LLMs.<n>We propose GLoRE, a novel representation engineering method to unleash the general long CoT reasoning capabilities of LLMs.
arXiv Detail & Related papers (2025-03-14T11:30:37Z) - When More is Less: Understanding Chain-of-Thought Length in LLMs [51.631483479081645]
Large Language Models (LLMs) employ Chain-of-Thought (CoT) reasoning to deconstruct complex problems.<n>This paper argues that longer CoTs are often presumed superior, arguing that longer is not always better.
arXiv Detail & Related papers (2025-02-11T05:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.