R&D-Agent-Quant: A Multi-Agent Framework for Data-Centric Factors and Model Joint Optimization
- URL: http://arxiv.org/abs/2505.15155v1
- Date: Wed, 21 May 2025 06:20:56 GMT
- Title: R&D-Agent-Quant: A Multi-Agent Framework for Data-Centric Factors and Model Joint Optimization
- Authors: Yuante Li, Xu Yang, Xiao Yang, Minrui Xu, Xisen Wang, Weiqing Liu, Jiang Bian,
- Abstract summary: Financial markets pose fundamental challenges for asset return prediction due to their high dimensionality, non-stationarity, and persistent volatility.<n>Despite advances in large language models and multi-agent systems, current quantitative research pipelines suffer from limited automation, weak interpretability, and fragmented coordination across key components such as factor mining and model innovation.<n>We propose R&D-Agent for Quantitative Finance, in short RD-Agent(Q), the first data-centric multi-agent framework designed to automate the full-stack research and development of quantitative strategies via coordinated factor-model co-optimization.
- Score: 19.301233249500655
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Financial markets pose fundamental challenges for asset return prediction due to their high dimensionality, non-stationarity, and persistent volatility. Despite advances in large language models and multi-agent systems, current quantitative research pipelines suffer from limited automation, weak interpretability, and fragmented coordination across key components such as factor mining and model innovation. In this paper, we propose R&D-Agent for Quantitative Finance, in short RD-Agent(Q), the first data-centric multi-agent framework designed to automate the full-stack research and development of quantitative strategies via coordinated factor-model co-optimization. RD-Agent(Q) decomposes the quant process into two iterative stages: a Research stage that dynamically sets goal-aligned prompts, formulates hypotheses based on domain priors, and maps them to concrete tasks, and a Development stage that employs a code-generation agent, Co-STEER, to implement task-specific code, which is then executed in real-market backtests. The two stages are connected through a feedback stage that thoroughly evaluates experimental outcomes and informs subsequent iterations, with a multi-armed bandit scheduler for adaptive direction selection. Empirically, RD-Agent(Q) achieves up to 2X higher annualized returns than classical factor libraries using 70% fewer factors, and outperforms state-of-the-art deep time-series models on real markets. Its joint factor-model optimization delivers a strong balance between predictive accuracy and strategy robustness. Our code is available at: https://github.com/microsoft/RD-Agent.
Related papers
- Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
We propose a unified Test-Time Compute scaling framework that leverages increased inference-time instead of larger models.<n>Our framework incorporates two complementary strategies: internal TTC and external TTC.<n>We demonstrate our textbf32B model achieves a 46% issue resolution rate, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1.
arXiv Detail & Related papers (2025-03-31T07:31:32Z) - DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
Large Language Models (LLMs) have revolutionized various domains, including natural language processing, data analysis, and software development.<n>We present Dynamic Action Re-Sampling (DARS), a novel inference time compute scaling approach for coding agents.<n>We evaluate our approach on SWE-Bench Lite benchmark, demonstrating that this scaling strategy achieves a pass@k score of 55% with Claude 3.5 Sonnet V2.
arXiv Detail & Related papers (2025-03-18T14:02:59Z) - MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
Large Language Models (LLMs) have shown remarkable capabilities as autonomous agents.<n>Existing benchmarks either focus on single-agent tasks or are confined to narrow domains, failing to capture the dynamics of multi-agent coordination and competition.<n>We introduce MultiAgentBench, a benchmark designed to evaluate LLM-based multi-agent systems across diverse, interactive scenarios.
arXiv Detail & Related papers (2025-03-03T05:18:50Z) - Multi-Agent Sampling: Scaling Inference Compute for Data Synthesis with Tree Search-Based Agentic Collaboration [81.45763823762682]
This work aims to bridge the gap by investigating the problem of data synthesis through multi-agent sampling.<n>We introduce Tree Search-based Orchestrated Agents(TOA), where the workflow evolves iteratively during the sequential sampling process.<n>Our experiments on alignment, machine translation, and mathematical reasoning demonstrate that multi-agent sampling significantly outperforms single-agent sampling as inference compute scales.
arXiv Detail & Related papers (2024-12-22T15:16:44Z) - SWE-Search: Enhancing Software Agents with Monte Carlo Tree Search and Iterative Refinement [18.84439000902905]
Current large language model (LLM)-based software agents often follow linear, sequential processes.<n>We propose SWE-Search, a multi-agent framework that integrates Monte Carlo Tree Search (MCTS) with a self-improvement mechanism.<n>This highlights the potential of self-evaluation driven search techniques in complex software engineering environments.
arXiv Detail & Related papers (2024-10-26T22:45:56Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
We present DS-Agent, a novel framework that harnesses large language models (LLMs) agent and case-based reasoning (CBR)
In the development stage, DS-Agent follows the CBR framework to structure an automatic iteration pipeline, which can flexibly capitalize on the expert knowledge from Kaggle.
In the deployment stage, DS-Agent implements a low-resource deployment stage with a simplified CBR paradigm, significantly reducing the demand on foundational capabilities of LLMs.
arXiv Detail & Related papers (2024-02-27T12:26:07Z) - Collaborative Uncertainty Benefits Multi-Agent Multi-Modal Trajectory Forecasting [61.02295959343446]
This work first proposes a novel concept, collaborative uncertainty (CU), which models the uncertainty resulting from interaction modules.<n>We build a general CU-aware regression framework with an original permutation-equivariant uncertainty estimator to do both tasks of regression and uncertainty estimation.<n>We apply the proposed framework to current SOTA multi-agent trajectory forecasting systems as a plugin module.
arXiv Detail & Related papers (2022-07-11T21:17:41Z) - Residual Q-Networks for Value Function Factorizing in Multi-Agent
Reinforcement Learning [0.0]
We propose a novel concept of Residual Q-Networks (RQNs) for Multi-Agent Reinforcement Learning (MARL)
The RQN learns to transform the individual Q-value trajectories in a way that preserves the Individual-Global-Max criteria (IGM)
The proposed method converges faster, with increased stability and shows robust performance in a wider family of environments.
arXiv Detail & Related papers (2022-05-30T16:56:06Z) - Detecting and adapting to crisis pattern with context based Deep
Reinforcement Learning [6.224519494738852]
We present an innovative DRL framework consisting in two sub-networks fed respectively with portfolio strategies past performances and standard deviations as well as additional contextual features.
Results on test set show this approach substantially over-performs traditional portfolio optimization methods like Markowitz and is able to detect and anticipate crisis like the current Covid one.
arXiv Detail & Related papers (2020-09-07T12:11:08Z) - Multi-Agent Determinantal Q-Learning [39.79718674655209]
We propose multi-agent determinantal Q-learning. Q-DPP promotes agents to acquire diverse behavioral models.
We demonstrate that Q-DPP generalizes major solutions including VDN, QMIX, and QTRAN on decentralizable cooperative tasks.
arXiv Detail & Related papers (2020-06-02T09:32:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.