EcomScriptBench: A Multi-task Benchmark for E-commerce Script Planning via Step-wise Intention-Driven Product Association
- URL: http://arxiv.org/abs/2505.15196v1
- Date: Wed, 21 May 2025 07:21:38 GMT
- Title: EcomScriptBench: A Multi-task Benchmark for E-commerce Script Planning via Step-wise Intention-Driven Product Association
- Authors: Weiqi Wang, Limeng Cui, Xin Liu, Sreyashi Nag, Wenju Xu, Chen Luo, Sheikh Muhammad Sarwar, Yang Li, Hansu Gu, Hui Liu, Changlong Yu, Jiaxin Bai, Yifan Gao, Haiyang Zhang, Qi He, Shuiwang Ji, Yangqiu Song,
- Abstract summary: This paper defines the task of E-commerce Script Planning (EcomScript) as three sequential subtasks.<n>We propose a novel framework that enables the scalable generation of product-enriched scripts by associating products with each step.<n>We construct the very first large-scale EcomScript dataset, EcomScriptBench, which includes 605,229 scripts sourced from 2.4 million products.
- Score: 83.4879773429742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Goal-oriented script planning, or the ability to devise coherent sequences of actions toward specific goals, is commonly employed by humans to plan for typical activities. In e-commerce, customers increasingly seek LLM-based assistants to generate scripts and recommend products at each step, thereby facilitating convenient and efficient shopping experiences. However, this capability remains underexplored due to several challenges, including the inability of LLMs to simultaneously conduct script planning and product retrieval, difficulties in matching products caused by semantic discrepancies between planned actions and search queries, and a lack of methods and benchmark data for evaluation. In this paper, we step forward by formally defining the task of E-commerce Script Planning (EcomScript) as three sequential subtasks. We propose a novel framework that enables the scalable generation of product-enriched scripts by associating products with each step based on the semantic similarity between the actions and their purchase intentions. By applying our framework to real-world e-commerce data, we construct the very first large-scale EcomScript dataset, EcomScriptBench, which includes 605,229 scripts sourced from 2.4 million products. Human annotations are then conducted to provide gold labels for a sampled subset, forming an evaluation benchmark. Extensive experiments reveal that current (L)LMs face significant challenges with EcomScript tasks, even after fine-tuning, while injecting product purchase intentions improves their performance.
Related papers
- IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - Automated Query-Product Relevance Labeling using Large Language Models for E-commerce Search [3.392843594990172]
Traditional approaches for annotating query-product pairs rely on human-based labeling services.<n>We show that Large Language Models (LLMs) can approach human-level accuracy on this task in a fraction of the time and cost required by human-labelers.<n>This scalable alternative to human-annotation has significant implications for information retrieval domains.
arXiv Detail & Related papers (2025-02-21T22:59:36Z) - eC-Tab2Text: Aspect-Based Text Generation from e-Commerce Product Tables [6.384763560610077]
We introduce eC-Tab2Text, a novel dataset designed to capture the intricacies of e-commerce.<n>We focus on text generation from product tables, enabling LLMs to produce high-quality, attribute-specific product reviews.<n>Our results demonstrate substantial improvements in generating contextually accurate reviews.
arXiv Detail & Related papers (2025-02-20T18:41:48Z) - DocETL: Agentic Query Rewriting and Evaluation for Complex Document Processing [10.712756715779822]
Large Language Models (LLMs) have shown promise in data processing.<n>These frameworks focus on reducing cost when executing user-specified operations.<n>This is problematic for complex tasks and data.<n>We present DocETL, a system that optimize complex document processing pipelines.
arXiv Detail & Related papers (2024-10-16T03:22:35Z) - IntentionQA: A Benchmark for Evaluating Purchase Intention Comprehension Abilities of Language Models in E-commerce [71.37481473399559]
In this paper, we present IntentionQA, a benchmark to evaluate LMs' comprehension of purchase intentions in E-commerce.
IntentionQA consists of 4,360 carefully curated problems across three difficulty levels, constructed using an automated pipeline.
Human evaluations demonstrate the high quality and low false-negative rate of our benchmark.
arXiv Detail & Related papers (2024-06-14T16:51:21Z) - Text-Based Product Matching -- Semi-Supervised Clustering Approach [9.748519919202986]
This paper aims to present a new philosophy to product matching utilizing a semi-supervised clustering approach.
We study the properties of this method by experimenting with the IDEC algorithm on the real-world dataset.
arXiv Detail & Related papers (2024-02-01T18:52:26Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - ADaPT: As-Needed Decomposition and Planning with Language Models [131.063805299796]
We introduce As-Needed Decomposition and Planning for complex Tasks (ADaPT)
ADaPT explicitly plans and decomposes complex sub-tasks as-needed, when the Large Language Models is unable to execute them.
Our results demonstrate that ADaPT substantially outperforms established strong baselines.
arXiv Detail & Related papers (2023-11-08T17:59:15Z) - EcomGPT: Instruction-tuning Large Language Models with Chain-of-Task
Tasks for E-commerce [68.72104414369635]
We propose the first e-commerce instruction dataset EcomInstruct, with a total of 2.5 million instruction data.
EcomGPT outperforms ChatGPT in term of cross-dataset/task generalization on E-commerce tasks.
arXiv Detail & Related papers (2023-08-14T06:49:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.