論文の概要: Recognition of Unseen Combined Motions via Convex Combination-based EMG Pattern Synthesis for Myoelectric Control
- arxiv url: http://arxiv.org/abs/2505.15218v1
- Date: Wed, 21 May 2025 07:46:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:59.20393
- Title: Recognition of Unseen Combined Motions via Convex Combination-based EMG Pattern Synthesis for Myoelectric Control
- Title(参考訳): 凸結合に基づく筋電制御のための筋電図パターン合成による見えない複合運動の認識
- Authors: Itsuki Yazawa, Seitaro Yoneda, Akira Furui,
- Abstract要約: 本稿では,合成筋電図データを用いて協調動作を効率よく認識する手法を提案する。
実験結果から,提案手法は未確認複合動作の分類精度を約17%向上した。
- 参考スコア(独自算出の注目度): 1.9662978733004604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electromyogram (EMG) signals recorded from the skin surface enable intuitive control of assistive devices such as prosthetic limbs. However, in EMG-based motion recognition, collecting comprehensive training data for all target motions remains challenging, particularly for complex combined motions. This paper proposes a method to efficiently recognize combined motions using synthetic EMG data generated through convex combinations of basic motion patterns. Instead of measuring all possible combined motions, the proposed method utilizes measured basic motion data along with synthetically combined motion data for training. This approach expands the range of recognizable combined motions while minimizing the required training data collection. We evaluated the effectiveness of the proposed method through an upper limb motion classification experiment with eight subjects. The experimental results demonstrated that the proposed method improved the classification accuracy for unseen combined motions by approximately 17%.
- Abstract(参考訳): 皮膚表面から記録された筋電図(EMG)信号は、義肢などの補助装置の直感的な制御を可能にする。
しかし、EMGに基づく動作認識では、特に複雑な複合動作において、全ての目標運動に対する包括的トレーニングデータを収集することは困難である。
本稿では,基本動作パターンの凸結合によって生成された合成EMGデータを用いて,結合動作を効率よく認識する手法を提案する。
提案手法は,すべての複合動作を計測する代わりに,基本動作データと合成複合動作データを用いて訓練を行う。
このアプローチは、必要なトレーニングデータ収集を最小限にしながら、認識可能な複合動作の範囲を広げる。
提案手法の有効性を上肢動作分類実験により評価した。
実験結果から,提案手法は未確認複合動作の分類精度を約17%向上した。
関連論文リスト
- A Comparative Study of Human Activity Recognition: Motion, Tactile, and multi-modal Approaches [43.97520291340696]
本研究は、視覚に基づく触覚センサが15のアクティビティを分類する能力を評価する。
触覚とモーションデータを組み合わせたマルチモーダル・フレームワークを提案する。
論文 参考訳(メタデータ) (2025-05-13T15:20:21Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
筋骨格系と学習可能なパラメトリックハンドモデルMANOを統合し,MS-MANOを作成する。
このモデルは骨格系を駆動する筋肉と腱の力学をエミュレートし、結果として生じるトルク軌跡に生理学的に現実的な制約を与える。
また,マルチ層パーセプトロンネットワークによる初期推定ポーズを改良する,ループ式ポーズ改善フレームワークBioPRを提案する。
論文 参考訳(メタデータ) (2024-04-16T02:18:18Z) - Motion Flow Matching for Human Motion Synthesis and Editing [75.13665467944314]
本研究では,効率的なサンプリングと効率性を備えた人体運動生成のための新しい生成モデルであるemphMotion Flow Matchingを提案する。
提案手法は, 従来の拡散モデルにおいて, サンプリングの複雑さを1000ステップから10ステップに減らし, テキスト・ツー・モーション・ジェネレーション・ベンチマークやアクション・ツー・モーション・ジェネレーション・ベンチマークで同等の性能を実現する。
論文 参考訳(メタデータ) (2023-12-14T12:57:35Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - A Multi-label Classification Approach to Increase Expressivity of
EMG-based Gesture Recognition [4.701158597171363]
本研究の目的は,表面筋電図に基づくジェスチャー認識システム(SEMG)の表現性を効率的に向上することである。
動作を2つのバイオメカニカルな独立したコンポーネントに分割する問題変換アプローチを用いる。
論文 参考訳(メタデータ) (2023-09-13T20:21:41Z) - Towards Robust and Accurate Myoelectric Controller Design based on
Multi-objective Optimization using Evolutionary Computation [0.22835610890984162]
我々は、カーネル化されたSVM分類器を考慮し、エネルギー効率の良いEMGベースのコントローラを設計する手法を提案している。
EMGをベースとした制御器の最適化性能を達成するため,分類器設計の主な戦略は,システム全体の誤動作を低減することである。
エリート的多目的進化アルゴリズムの$-$は、非支配的なソート遺伝的アルゴリズムNSGA-II (Non-dominated sorting genetic algorithm II) であり、SVMのハイパーパラメータをチューニングするために使われている。
論文 参考訳(メタデータ) (2022-04-02T06:13:01Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
本研究では,前腕のEMG活性をハンドキネマティクスに連続的にマップする,長期記憶(LSTM)ネットワークに基づく新しい手法を提案する。
私たちの研究は、この困難なデータセットを使用するハンドキネマティクスの予測に関する最初の報告です。
提案手法は, 人工手指の複数のDOFの独立的, 比例的アクティベーションのための制御信号の生成に適していることが示唆された。
論文 参考訳(メタデータ) (2021-04-29T00:11:32Z) - Segmentation and Classification of EMG Time-Series During Reach-to-Grasp
Motion [10.388787606334745]
動的アーム/ハンド姿勢の変動を伴う連続把握動作から発生するEMG信号を分類するためのフレームワークを提案する。
提案されたフレームワークはリアルタイムに評価され、時間とともに精度が変化した。
論文 参考訳(メタデータ) (2021-04-19T20:41:06Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
この作業は、icubロボットシミュレータの7dofアームを使用して、シミュレーション環境で実行された。
コストに敏感な能動学習手法は最適な関節構成を選択するために用いられる。
その結果,コスト依存型能動学習は標準的な能動学習手法と同等の精度を示し,実行運動の約半分を減らした。
論文 参考訳(メタデータ) (2021-01-26T16:01:02Z) - Pose And Joint-Aware Action Recognition [87.4780883700755]
本稿では,まず,共有動作エンコーダを用いて各関節の動作特徴を別々に抽出する,関節に基づく動作認識の新しいモデルを提案する。
私たちのジョイントセレクタモジュールは、そのタスクの最も識別性の高いジョイントを選択するために、ジョイント情報を再重み付けします。
JHMDB, HMDB, Charades, AVA アクション認識データセットにおける最先端のジョイントベースアプローチに対する大きな改善点を示す。
論文 参考訳(メタデータ) (2020-10-16T04:43:34Z) - Inertial Measurements for Motion Compensation in Weight-bearing
Cone-beam CT of the Knee [6.7461735822055715]
膝のCTスキャン中の不随意運動は、再建されたボリュームのアーティファクトを引き起こすため、臨床診断には使用できない。
被験者の脚に慣性測定装置(IMU)を装着し,スキャン中の運動を測定する。
論文 参考訳(メタデータ) (2020-07-09T09:26:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。