FlowKV: Enhancing Multi-Turn Conversational Coherence in LLMs via Isolated Key-Value Cache Management
- URL: http://arxiv.org/abs/2505.15347v1
- Date: Wed, 21 May 2025 10:20:46 GMT
- Title: FlowKV: Enhancing Multi-Turn Conversational Coherence in LLMs via Isolated Key-Value Cache Management
- Authors: Xiang Liu, Hong Chen, Xuming Hu, Xiaowen Chu,
- Abstract summary: FlowKV is a novel multi-turn isolation mechanism for KV Cache management.<n>It preserves the accumulated compressed KV cache from past turns.<n>It prevents the re-compression of older context and thereby mitigating catastrophic forgetting.
- Score: 27.734106884226005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are increasingly deployed in multi-turn conversational applications, where the management of the Key-Value (KV) Cache presents a significant bottleneck. The linear growth of the KV Cache with dialogue history imposes substantial computational costs, and existing eviction strategies often degrade performance by repeatedly compressing early conversational context, leading to information loss and context forgetting. This paper introduces FlowKV, a novel \textbf{multi-turn isolation mechanism} for KV Cache management, which can be applied to any KV Cache compression method without training. FlowKV's core innovation is a multi-turn isolation mechanism that preserves the accumulated compressed KV cache from past turns. Compression is then strategically applied only to the newly generated KV pairs of the latest completed turn, effectively preventing the re-compression of older context and thereby mitigating catastrophic forgetting. Our results demonstrate that FlowKV consistently and significantly outperforms baseline strategies in maintaining instruction-following accuracy and user preference retention from 10.90\% to 75.40\%, particularly in later conversational turns.
Related papers
- FAEDKV: Infinite-Window Fourier Transform for Unbiased KV Cache Compression [18.12657364501536]
FAEDKV is a novel, training-free KV cache compression framework.<n>It preserves both early and recent contextual information.<n>Experiments on LongBench benchmark demonstrate FAEDKV's superiority over existing methods by up to 22%.
arXiv Detail & Related papers (2025-07-26T18:20:25Z) - Krul: Efficient State Restoration for Multi-turn Conversations with Dynamic Cross-layer KV Sharing [24.159793132911954]
We present Krul, a multi-turn LLM inference system that enables accurate and efficient KV cache restoration.<n>Krul selects compression strategies based on attention similarity across layer pairs and uses a recomputation-loading pipeline to restore the KV cache.<n>It achieves a 1.5x-2.68x reduction in time-to-first-token (TTFT) and a 1.33x-2.35x reduction in KV cache storage.
arXiv Detail & Related papers (2025-07-10T01:51:17Z) - ReCalKV: Low-Rank KV Cache Compression via Head Reordering and Offline Calibration [81.81027217759433]
Large language models (LLMs) are often constrained by the excessive memory required to store the Key-Value ( KV) cache.<n>Recent methods have explored reducing the hidden dimensions of the KV cache, but many introduce additional computation through projection layers.<n>We propose ReCalKV, a post-training KV cache compression method that reduces the hidden dimensions of the KV cache.
arXiv Detail & Related papers (2025-05-30T08:49:27Z) - R-KV: Redundancy-aware KV Cache Compression for Reasoning Models [77.84539432982307]
We propose Redundancy-aware KV Cache Compression for Reasoning models (R-KV)<n>R-KV preserves nearly 100% of the full KV cache performance using only 10% of the KV cache.<n>Remarkably, R-KV even achieves 105% of full KV cache performance with 16% of the KV cache.
arXiv Detail & Related papers (2025-05-30T02:03:24Z) - KVzip: Query-Agnostic KV Cache Compression with Context Reconstruction [37.489744618357655]
Transformer-based large language models (LLMs) cache context as key-value ( KV) pairs during inference.<n>As context length grows, KV cache sizes expand, leading to substantial memory overhead and increased attention latency.<n>This paper introduces KVzip, a query-agnostic KV cache eviction method enabling effective reuse of compressed KV caches across diverse queries.
arXiv Detail & Related papers (2025-05-29T13:05:47Z) - KeepKV: Eliminating Output Perturbation in KV Cache Compression for Efficient LLMs Inference [16.53643930310808]
KeepKV is a novel adaptive KV cache merging method designed to eliminate output perturbation while preserving performance under strict memory constraints.<n>We show that KeepKV substantially reduces memory usage, enhances inference throughput by more than 2x and keeps superior generation quality even with 10% KV cache budgets.
arXiv Detail & Related papers (2025-04-14T06:58:00Z) - DBudgetKV: Dynamic Budget in KV Cache Compression for Ensuring Optimal Performance [125.81664663201282]
We introduce a new KV cache compression method dubbed DBudgetKV.<n>It features an attention-based metric to signal when the remaining KV cache is unlikely to match the full-cache performance, then halting the pruning process.<n>Our method is easy to integrate within LLM inference, not only optimizing memory space, but also showing reduced inference time compared to existing methods.
arXiv Detail & Related papers (2025-02-24T06:33:39Z) - ChunkKV: Semantic-Preserving KV Cache Compression for Efficient Long-Context LLM Inference [28.96662510838151]
We introduce ChunkKV, which reimagines KV cache compression by treating semantic chunks as basic compression units.<n>This approach preserves complete linguistic structures and contextual integrity, ensuring that essential meaning is retained even under aggressive compression.<n>ChunkKV outperforms state-of-the-art methods by up to 8.7% in precision while maintaining the same compression ratio.
arXiv Detail & Related papers (2025-02-01T03:49:47Z) - More Tokens, Lower Precision: Towards the Optimal Token-Precision Trade-off in KV Cache Compression [71.42818367729573]
In large language models (LLMs), the memory usage of KV cache has become a critical bottleneck during inference.<n>The mainstream KV compression methods, including KV pruning and KV quantization, primarily focus on either token or precision dimension separately.<n>In this paper, we comprehensively investigate the token-precision trade-off in KV cache compression.
arXiv Detail & Related papers (2024-12-17T09:20:31Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
Key-Value ( KV) cache is crucial component in serving transformer-based autoregressive large language models (LLMs)
Existing approaches to mitigate this issue include: (1) efficient attention variants integrated in upcycling stages; (2) KV cache compression at test time; and (3) KV cache compression at test time.
We propose a low-rank approximation of KV weight matrices, allowing plug-in integration with existing transformer-based LLMs without model retraining.
Our method is designed to function without model tuning in upcycling stages or task-specific profiling in test stages.
arXiv Detail & Related papers (2024-10-04T03:10:53Z) - CSKV: Training-Efficient Channel Shrinking for KV Cache in Long-Context Scenarios [13.144156413032896]
We introduce CSKV, a training-efficient Channel Shrinking technique for KV cache compression.
We show that CSKV can reduce the memory overhead of the KV cache by 80% while maintaining the model's long-context capability.
Our method can be seamlessly combined with quantization to further reduce the memory overhead, achieving a compression ratio of up to 95%.
arXiv Detail & Related papers (2024-09-16T17:36:50Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications.<n>This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference.<n>We propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels.
arXiv Detail & Related papers (2024-07-30T17:59:08Z) - PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling [38.732413451399]
Pyramid KV is a novel and effective KV cache compression method.<n>We show that Pyramid KV matches the performance of models with a full KV cache while retaining only 12% of the KV cache.<n>In the Needle-in-a-Haystack experiment, Pyramid KV outperforms competing methods in maintaining long-context comprehension.
arXiv Detail & Related papers (2024-06-04T07:51:30Z) - Cost-Efficient Large Language Model Serving for Multi-turn Conversations with CachedAttention [13.041210267981613]
CachedAttention is a new attention mechanism that enables reuse of KV caches across multi-turn conversations.
It significantly decreases the time to the first token (TTFT) by up to 87%, improves the prompt prefilling throughput by up to 7.8$times$ for multi-turn conversations, and reduces the end-to-end inference cost by up to 70%.
arXiv Detail & Related papers (2024-03-23T10:42:49Z) - No Token Left Behind: Reliable KV Cache Compression via Importance-Aware
Mixed Precision Quantization [31.806112535762367]
Key-Value (KV) Caching has become an essential technique for accelerating the inference speed and throughput of generative Large Language Models(LLMs)
arXiv Detail & Related papers (2024-02-28T06:34:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.