Federated Learning-Enhanced Blockchain Framework for Privacy-Preserving Intrusion Detection in Industrial IoT
- URL: http://arxiv.org/abs/2505.15376v1
- Date: Wed, 21 May 2025 11:11:44 GMT
- Title: Federated Learning-Enhanced Blockchain Framework for Privacy-Preserving Intrusion Detection in Industrial IoT
- Authors: Anas Ali, Mubashar Husain, Peter Hans,
- Abstract summary: Industrial Internet of Things (IIoT) systems have become integral to smart manufacturing, yet their growing connectivity has exposed them to significant cybersecurity threats.<n>Traditional intrusion detection systems (IDS) often rely on centralized architectures that raise concerns over data privacy, latency, and single points of failure.<n>We propose a novel Federated Learning-Enhanced Framework (FL-BCID) for privacy-preserving intrusion detection tailored for IIoT environments.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Industrial Internet of Things (IIoT) systems have become integral to smart manufacturing, yet their growing connectivity has also exposed them to significant cybersecurity threats. Traditional intrusion detection systems (IDS) often rely on centralized architectures that raise concerns over data privacy, latency, and single points of failure. In this work, we propose a novel Federated Learning-Enhanced Blockchain Framework (FL-BCID) for privacy-preserving intrusion detection tailored for IIoT environments. Our architecture combines federated learning (FL) to ensure decentralized model training with blockchain technology to guarantee data integrity, trust, and tamper resistance across IIoT nodes. We design a lightweight intrusion detection model collaboratively trained using FL across edge devices without exposing sensitive data. A smart contract-enabled blockchain system records model updates and anomaly scores to establish accountability. Experimental evaluations using the ToN-IoT and N-BaIoT datasets demonstrate the superior performance of our framework, achieving 97.3% accuracy while reducing communication overhead by 41% compared to baseline centralized methods. Our approach ensures privacy, scalability, and robustness-critical for secure industrial operations. The proposed FL-BCID system provides a promising solution for enhancing trust and privacy in modern IIoT security architectures.
Related papers
- Zero-Trust Foundation Models: A New Paradigm for Secure and Collaborative Artificial Intelligence for Internet of Things [61.43014629640404]
Zero-Trust Foundation Models (ZTFMs) embed zero-trust security principles into the lifecycle of foundation models (FMs) for Internet of Things (IoT) systems.<n>ZTFMs can enable secure, privacy-preserving AI across distributed, heterogeneous, and potentially adversarial IoT environments.
arXiv Detail & Related papers (2025-05-26T06:44:31Z) - Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
We propose a novel framework called Federated Retrieval-Augmented Generation (FedE4RAG)<n>FedE4RAG facilitates collaborative training of client-side RAG retrieval models.<n>We apply homomorphic encryption within federated learning to safeguard model parameters.
arXiv Detail & Related papers (2025-04-27T04:26:02Z) - Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy-Preserving and Real-Time Threat Detection Capabilities [0.0]
Traditional centralized security methods often struggle to balance privacy preservation and real-time threat detection in IoT networks.<n>This study proposes a Federated Learning-Driven Cybersecurity Framework designed specifically for IoT environments.<n>Secure aggregation of locally trained models is achieved using homomorphic encryption, allowing collaborative learning without exposing sensitive information.
arXiv Detail & Related papers (2025-02-14T23:11:51Z) - Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
In Industry 4.0 systems, resource-constrained edge devices engage in frequent data interactions.
This paper proposes a digital twin (DT) and federated digital twin (FL) scheme.
The efficacy of our proposed cooperative interference-based FL process has been verified through numerical analysis.
arXiv Detail & Related papers (2024-11-04T17:48:02Z) - FL-DABE-BC: A Privacy-Enhanced, Decentralized Authentication, and Secure Communication for Federated Learning Framework with Decentralized Attribute-Based Encryption and Blockchain for IoT Scenarios [0.0]
This study proposes an advanced Learning (FL) framework designed to enhance data privacy and security in IoT environments.
We integrate Decentralized Attribute-Based Encryption (DABE), Homomorphic Encryption (HE), Secure Multi-Party Computation (SMPC) and technology.
Unlike traditional FL, our framework enables secure, decentralized authentication and encryption directly on IoT devices.
arXiv Detail & Related papers (2024-10-26T19:30:53Z) - A Trustworthy AIoT-enabled Localization System via Federated Learning and Blockchain [29.968086297894626]
We propose a framework named DFLoc to achieve precise 3D localization tasks.
Specifically, we address the issue of single-point failure for a reliable and accurate indoor localization system.
We introduce an updated model verification mechanism within the blockchain to alleviate the concern of malicious node attacks.
arXiv Detail & Related papers (2024-07-08T04:14:19Z) - Federated Learning with Blockchain-Enhanced Machine Unlearning: A Trustworthy Approach [20.74679353443655]
We introduce a framework that melds blockchain with federated learning, thereby ensuring an immutable record of unlearning requests and actions.
Our key contributions encompass a certification mechanism for the unlearning process, the enhancement of data security and privacy, and the optimization of data management.
arXiv Detail & Related papers (2024-05-27T04:35:49Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - A Survey of Trustworthy Federated Learning with Perspectives on
Security, Robustness, and Privacy [47.89042524852868]
Federated Learning (FL) stands out as a promising solution for diverse real-world scenarios.
However, challenges around data isolation and privacy threaten the trustworthiness of FL systems.
arXiv Detail & Related papers (2023-02-21T12:52:12Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
We propose a hierarchical blockchain-based federated learning framework to enable secure and privacy-preserved collaborative IoT intrusion detection.
The proposed ML-based intrusion detection framework follows a hierarchical federated learning architecture to ensure the privacy of the learning process and organisational data.
The outcome is a securely designed ML-based intrusion detection system capable of detecting a wide range of malicious activities while preserving data privacy.
arXiv Detail & Related papers (2022-04-08T19:06:16Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
Federated Learning allows a large number of clients to train a joint model without the need to share their private data.
To ensure the confidentiality of the client updates, Federated Learning systems employ secure aggregation.
We present RoFL, a secure Federated Learning system that improves robustness against malicious clients.
arXiv Detail & Related papers (2021-07-07T15:42:49Z) - Towards Communication-efficient and Attack-Resistant Federated Edge
Learning for Industrial Internet of Things [40.20432511421245]
Federated Edge Learning (FEL) allows edge nodes to train a global deep learning model collaboratively for edge computing in the Industrial Internet of Things (IIoT)
FEL faces two critical challenges: communication overhead and data privacy.
We propose a communication-efficient and privacy-enhanced asynchronous FEL framework for edge computing in IIoT.
arXiv Detail & Related papers (2020-12-08T14:11:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.