論文の概要: Hunyuan-TurboS: Advancing Large Language Models through Mamba-Transformer Synergy and Adaptive Chain-of-Thought
- arxiv url: http://arxiv.org/abs/2505.15431v1
- Date: Wed, 21 May 2025 12:11:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:59.622715
- Title: Hunyuan-TurboS: Advancing Large Language Models through Mamba-Transformer Synergy and Adaptive Chain-of-Thought
- Title(参考訳): Hunyuan-TurboS:Mamba-Transformer SynergyとAdaptive Chain-of-Thoughtによる大規模言語モデルの改良
- Authors: Ao Liu, Botong Zhou, Can Xu, Chayse Zhou, ChenChen Zhang, Chengcheng Xu, Chenhao Wang, Decheng Wu, Dengpeng Wu, Dian Jiao, Dong Du, Dong Wang, Feng Zhang, Fengzong Lian, Guanghui Xu, Guanwei Zhang, Hai Wang, Haipeng Luo, Han Hu, Huilin Xu, Jiajia Wu, Jianchen Zhu, Jianfeng Yan, Jiaqi Zhu, Jihong Zhang, Jinbao Xue, Jun Xia, Junqiang Zheng, Kai Liu, Kai Zhang, Kai Zheng, Kejiao Li, Keyao Wang, Lan Jiang, Lixin Liu, Lulu Wu, Mengyuan Huang, Peijie Yu, Peiqi Wang, Qian Wang, Qianbiao Xiang, Qibin Liu, Qingfeng Sun, Richard Guo, Ruobing Xie, Saiyong Yang, Shaohua Chen, Shihui Hu, Shuai Li, Shuaipeng Li, Shuang Chen, Suncong Zheng, Tao Yang, Tian Zhang, Tinghao Yu, Weidong Han, Weijie Liu, Weijin Zhou, Weikang Wang, Wesleye Chen, Xiao Feng, Xiaoqin Ren, Xingwu Sun, Xiong Kuang, Xuemeng Huang, Xun Cao, Yanfeng Chen, Yang Du, Yang Zhen, Yangyu Tao, Yaping Deng, Yi Shen, Yigeng Hong, Yiqi Chen, Yiqing Huang, Yuchi Deng, Yue Mao, Yulong Wang, Yuyuan Zeng, Zenan Xu, Zhanhui Kang, Zhe Zhao, ZhenXiang Yan, Zheng Fang, Zhichao Hu, Zhongzhi Chen, Zhuoyu Li, Zongwei Li, Alex Yan, Ande Liang, Baitong Liu, Beiping Pan, Bin Xing, Binghong Wu, Bingxin Qu, Bolin Ni, Boyu Wu, Chen Li, Cheng Jiang, Cheng Zhang, Chengjun Liu, Chengxu Yang, Chiyu Wang, Chong Zha, Daisy Yi, Di Wang, Fanyang Lu, Fei Chen, Feifei Liu, Feng Zheng, Guanghua Yu, Guiyang Li, Guohua Wang, Haisheng Lin, Han Liu, Han Wang, Hao Fei, Hao Lu, Haoqing Jiang, Haoran Sun, Haotian Zhu, Huangjin Dai, Huankui Chen, Huawen Feng, Huihui Cai, Huxin Peng, Jackson Lv, Jiacheng Shi, Jiahao Bu, Jianbo Li, Jianglu Hu, Jiangtao Guan, Jianing Xu, Jianwei Cai, Jiarong Zhang, Jiawei Song, Jie Jiang, Jie Liu, Jieneng Yang, Jihong Zhang, Jin lv, Jing Zhao, Jinjian Li, Jinxing Liu, Jun Zhao, Juntao Guo, Kai Wang, Kan Wu, Lei Fu, Lei He, Lei Wang, Li Liu, Liang Dong, Liya Zhan, Long Cheng, Long Xu, Mao Zheng, Meng Liu, Mengkang Hu, Nanli Chen, Peirui Chen, Peng He, Pengju Pan, Pengzhi Wei, Qi Yang, Qi Yi, Roberts Wang, Rongpeng Chen, Rui Sun, Rui Yang, Ruibin Chen, Ruixu Zhou, Shaofeng Zhang, Sheng Zhang, Shihao Xu, Shuaishuai Chang, Shulin Liu, SiQi Wang, Songjia Feng, Songling Yuan, Tao Zhang, Tianjiao Lang, Tongkai Li, Wei Deng, Wei Li, Weichao Wang, Weigang Zhang, Weixuan Sun, Wen Ouyang, Wenxiang Jiao, Wenzhi Sun, Wenzhuo Jia, Xiang Zhang, Xiangyu He, Xianshun Ren, XiaoYing Zhu, Xiaolong Guo, Xiaoxue Li, Xiaoyu Ma, Xican Lu, Xinhua Feng, Xinting Huang, Xinyu Guan, Xirui Li, Xu Zhang, Xudong Gao, Xun Luo, Xuxiang Qi, Yangkun Chen, Yangyu Tao, Yanling Xiao, Yantao Mai, Yanze Chen, Yao Ding, Yeting Yang, YiFan Song, Yifan Yang, Yijiao Zhu, Yinhe Wu, Yixian Liu, Yong Yang, Yuanjun Cai, Yuanlin Tu, Yue Zhang, Yufei Huang, Yuhang Zhou, Yuhao Jiang, Yuhong Liu, Yuhui Hu, Yujin Lin, Yun Yang, Yunhao Wang, Yusong Zhang, Zekun Wu, Zelong Zhang, Zhan Yu, Zhaoliang Yang, Zhe Zhao, Zheng Li, Zhenyu Huang, Zhiguang Liu, Zhijiang Xu, Zhiqing Kui, Zhiyin Zeng, Zhiyuan Xiong, Zhuo Han, Zifan Wu, Zigang Geng, Zilong Zhao, Ziyan Tang, Ziyuan Zhu, Zonglei Zhu, Zhijiang Xu,
- Abstract要約: Hunyuan-TurboSは、Transformer-Mamba Mixture of Expertsの大型ハイブリッドモデルである。
高いパフォーマンスと効率のバランスを保ち、推論コストを低く抑えている。
- 参考スコア(独自算出の注目度): 190.89152880629825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Large Language Models (LLMs) rapidly advance, we introduce Hunyuan-TurboS, a novel large hybrid Transformer-Mamba Mixture of Experts (MoE) model. It synergistically combines Mamba's long-sequence processing efficiency with Transformer's superior contextual understanding. Hunyuan-TurboS features an adaptive long-short chain-of-thought (CoT) mechanism, dynamically switching between rapid responses for simple queries and deep "thinking" modes for complex problems, optimizing computational resources. Architecturally, this 56B activated (560B total) parameter model employs 128 layers (Mamba2, Attention, FFN) with an innovative AMF/MF block pattern. Faster Mamba2 ensures linear complexity, Grouped-Query Attention minimizes KV cache, and FFNs use an MoE structure. Pre-trained on 16T high-quality tokens, it supports a 256K context length and is the first industry-deployed large-scale Mamba model. Our comprehensive post-training strategy enhances capabilities via Supervised Fine-Tuning (3M instructions), a novel Adaptive Long-short CoT Fusion method, Multi-round Deliberation Learning for iterative improvement, and a two-stage Large-scale Reinforcement Learning process targeting STEM and general instruction-following. Evaluations show strong performance: overall top 7 rank on LMSYS Chatbot Arena with a score of 1356, outperforming leading models like Gemini-2.0-Flash-001 (1352) and o4-mini-2025-04-16 (1345). TurboS also achieves an average of 77.9% across 23 automated benchmarks. Hunyuan-TurboS balances high performance and efficiency, offering substantial capabilities at lower inference costs than many reasoning models, establishing a new paradigm for efficient large-scale pre-trained models.
- Abstract(参考訳): LLM(Large Language Models)が急速に進歩するにつれて,Hunyuan-TurboSという新しいハイブリッドトランスフォーマー・マンバ・ミックス・オブ・エキスパート(MoE)モデルを導入する。
マンバの長いシーケンス処理効率とトランスフォーマーの優れた文脈理解を相乗的に組み合わせている。
Hunyuan-TurboSは適応長短チェーン・オブ・シント(CoT)機構を備え、単純なクエリに対する迅速な応答と複雑な問題に対する深い"思考"モードを動的に切り替え、計算資源を最適化する。
この56B(合計560B)パラメータモデルは、128層(Mamba2, Attention, FFN)のAMF/MFブロックパターンを採用している。
より高速なMamba2は線形複雑性を確保し、Grouped-Query AttentionはKVキャッシュを最小化し、FFNはMoE構造を使用する。
16Tの高品質トークンで事前訓練され、256Kのコンテキスト長をサポートし、業界初の大規模マンバモデルである。
我々の総合的なポストトレーニング戦略は、改良されたファインチューニング(3M命令)、新しい適応長短CoTフュージョン法、反復的改善のためのマルチラウンドDeliberation Learning、STEMと一般的な命令追従をターゲットとした2段階の大規模強化学習プロセスを通じて能力を向上させる。
LMSYS Chatbot Arenaのスコアは1356で、Gemini-2.0-Flash-001 (1352) や o4-mini-2025-04-16 (1345) など、主要なモデルを上回っている。
また、TurboSは23の自動ベンチマークで平均77.9%を達成している。
Hunyuan-TurboSは高い性能と効率のバランスをとり、多くの推論モデルよりも低い推論コストで実質的な能力を提供し、大規模な事前訓練モデルの効率的な新しいパラダイムを確立している。
関連論文リスト
- MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
従来の軽量モデルの研究は、主にCNNとTransformerベースの設計に重点を置いてきた。
効率と性能のバランスをとるMobileMambaフレームワークを提案する。
MobileMambaはTop-1で83.6%を達成し、既存の最先端の手法を上回っている。
論文 参考訳(メタデータ) (2024-11-24T18:01:05Z) - The Mamba in the Llama: Distilling and Accelerating Hybrid Models [76.64055251296548]
注目層からの線形射影重みを学術的なGPU資源で再利用することにより,大規模な変換器を線形RNNに蒸留する方法を示す。
結果として得られたハイブリッドモデルは、チャットベンチマークのオリジナルのTransformerに匹敵するパフォーマンスを達成する。
また,Mambaとハイブリッドモデルの推論速度を高速化するハードウェア対応投機的復号アルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-08-27T17:56:11Z) - Scalable Autoregressive Image Generation with Mamba [23.027439743155192]
本稿では,マンバアーキテクチャに基づく自己回帰(AR)画像生成モデルであるAiMを紹介する。
Mamba(マンバ)は、線形時間による長周期モデリングに特有な性能を特徴とする、新しい状態空間モデルである。
パラメータ数は128Mから1.3Bまで様々である。
論文 参考訳(メタデータ) (2024-08-22T09:27:49Z) - SIGMA: Selective Gated Mamba for Sequential Recommendation [56.85338055215429]
最近の進歩であるMambaは、時系列予測において例外的なパフォーマンスを示した。
SIGMA(Selective Gated Mamba)と呼ばれる,シークエンシャルレコメンデーションのための新しいフレームワークを紹介する。
以上の結果から,SIGMAは5つの実世界のデータセットにおいて,現在のモデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-08-21T09:12:59Z) - LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba [54.85262314960038]
局所的意図的マンバブロックは、大域的コンテキストと局所的詳細の両方を線形複雑性でキャプチャする。
このモデルは, 256x256の解像度で, ImageNet上の様々なモデルスケールでDiTの性能を上回り, 優れたスケーラビリティを示す。
ImageNet 256x256 と 512x512 の最先端拡散モデルと比較すると,最大 62% GFLOP の削減など,我々の最大のモデルには顕著な利点がある。
論文 参考訳(メタデータ) (2024-08-05T16:39:39Z) - GroupMamba: Efficient Group-Based Visual State Space Model [66.35608254724566]
状態空間モデル(SSM)は、最近、四次計算の複雑さで長距離依存を捉えることを約束している。
しかし、純粋にSSMベースのモデルは、コンピュータビジョンタスクにおける安定性と最先端の性能を達成するために重要な課題に直面している。
本稿では,コンピュータビジョンのためのSSMベースのモデルをスケールする上での課題,特に大規模モデルの不安定性と非効率性について論じる。
論文 参考訳(メタデータ) (2024-07-18T17:59:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。