論文の概要: Adaptive Temperature Scaling with Conformal Prediction
- arxiv url: http://arxiv.org/abs/2505.15437v1
- Date: Wed, 21 May 2025 12:18:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:59.627354
- Title: Adaptive Temperature Scaling with Conformal Prediction
- Title(参考訳): コンフォーマル予測による適応温度スケーリング
- Authors: Nikita Kotelevskii, Mohsen Guizani, Eric Moulines, Maxim Panov,
- Abstract要約: 本稿では,共形予測集合の要素にキャリブレーションされた確率を割り当てる最初の手法を提案する。
本手法では,適応キャリブレーション問題として,所望のカバレッジレベルに適合する入力固有温度パラメータを選択する。
- 参考スコア(独自算出の注目度): 47.51764759462074
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Conformal prediction enables the construction of high-coverage prediction sets for any pre-trained model, guaranteeing that the true label lies within the set with a specified probability. However, these sets do not provide probability estimates for individual labels, limiting their practical use. In this paper, we propose, to the best of our knowledge, the first method for assigning calibrated probabilities to elements of a conformal prediction set. Our approach frames this as an adaptive calibration problem, selecting an input-specific temperature parameter to match the desired coverage level. Experiments on several challenging image classification datasets demonstrate that our method maintains coverage guarantees while significantly reducing expected calibration error.
- Abstract(参考訳): コンフォーマル予測は、任意の事前訓練されたモデルに対する高被覆予測セットの構築を可能にし、真のラベルが特定の確率でセット内に存在することを保証する。
しかし、これらのセットは個々のラベルに対する確率推定を提供しておらず、実用的使用を制限している。
本稿では,我々の知る限り,共形予測集合の要素に校正された確率を割り当てる最初の方法を提案する。
本手法では,適応キャリブレーション問題として,所望のカバレッジレベルに適合する入力固有温度パラメータを選択する。
いくつかの難解な画像分類データセットの実験により,本手法はキャリブレーション誤差を大幅に低減しつつ,カバレッジ保証を維持していることが示された。
関連論文リスト
- When Can We Reuse a Calibration Set for Multiple Conformal Predictions? [0.0]
我々は,e-conformal predictionとHoeffdingの不等式が組み合わさって,単一校正集合の繰り返し使用を可能にすることを示す。
我々は、ディープニューラルネットワークをトレーニングし、キャリブレーションセットを使用して、Hoeffdingの補正を推定する。
この補正により、修正マルコフの不等式を適用することができ、定量化された信頼度を持つ予測セットを構築することができる。
論文 参考訳(メタデータ) (2025-06-24T14:57:25Z) - Semi-Supervised Conformal Prediction With Unlabeled Nonconformity Score [19.15617038007535]
コンフォーマル予測(CP)は不確実性定量化のための強力なフレームワークである。
ラベル付きデータがしばしば制限される現実世界のアプリケーションでは、標準CPはカバレッジの偏りを生じさせ、非常に大きな予測セットを出力する。
ラベル付きデータとラベルなしデータの両方を利用してキャリブレーションを行うSemiCPを提案する。
論文 参考訳(メタデータ) (2025-05-27T12:57:44Z) - Sparse Activations as Conformal Predictors [19.298282860984116]
共形予測と疎ソフトマックス様変換の新たな関連性を見いだす。
本研究では, キャリブレーションプロセスが広く使用されている温度スケーリング法に対応するように, 分類のための新しい非整合性スコアを導入する。
提案手法は, 適用範囲, 効率, 適応性の観点から, 競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2025-02-20T17:53:41Z) - Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores [52.92618442300405]
有限サンプルにおいて、正確に分布のない条件付きカバレッジを達成することは不可能である。
本稿では,最も重要となる範囲を対象とするコンフォメーション予測アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-17T12:01:56Z) - Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
コンフォーマル予測は、モデルに依存しない、分布のない不確実性定量化を提供する。
しかし、敵が訓練データと校正データを操作した場合の毒殺攻撃では、共形予測は信頼性が低い。
信頼性予測セット (RPS): 汚染下での信頼性保証を証明可能な共形予測セットを構築するための最初の効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-13T15:37:11Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
生成モデルは出力に対する厳密な統計的保証を欠いている。
厳密な統計的保証を満たす予測セットを生成する逐次共形予測法を提案する。
このことは、高い確率で予測セットが少なくとも1つの許容可能な(または有効な)例を含むことを保証している。
論文 参考訳(メタデータ) (2024-10-02T15:26:52Z) - A conformalized learning of a prediction set with applications to medical imaging classification [14.304858613146536]
本稿では,真のラベルを含む予測セットをユーザが特定した確率で生成するアルゴリズムを提案する。
提案アルゴリズムをいくつかの標準医用画像分類データセットに適用した。
論文 参考訳(メタデータ) (2024-08-09T12:49:04Z) - Does confidence calibration improve conformal prediction? [10.340903334800787]
適応型共形予測において、電流信頼度校正法がより大きな予測セットをもたらすことを示す。
温度値の役割を調べることにより,高信頼度予測が適応型等角予測の効率を高めることが確認された。
本稿では,予測セットの効率を向上させるために,新しい損失関数を備えた温度スケーリングの変種である Conformal Temperature Scaling (ConfTS) を提案する。
論文 参考訳(メタデータ) (2024-02-06T19:27:48Z) - Test-time Recalibration of Conformal Predictors Under Distribution Shift
Based on Unlabeled Examples [30.61588337557343]
コンフォーマル予測器は、ユーザが特定した確率で一連のクラスを計算することで不確実性の推定を提供する。
本研究では,自然分布シフト下での優れた不確実性推定を行う手法を提案する。
論文 参考訳(メタデータ) (2022-10-09T04:46:00Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
ニューラルネットワークの誤りを補うポストホックアプローチは、温度スケーリングを実行することだ。
入力毎に異なる温度値を予測し、信頼度と精度のミスマッチを調整することを提案する。
CIFAR10/100およびTiny-ImageNetデータセットを用いて,ResNet50およびWideResNet28-10アーキテクチャ上で本手法をテストする。
論文 参考訳(メタデータ) (2022-07-13T14:13:49Z) - Private Prediction Sets [72.75711776601973]
機械学習システムは、個人のプライバシーの確実な定量化と保護を必要とする。
これら2つのデシラタを共同で扱う枠組みを提案する。
本手法を大規模コンピュータビジョンデータセット上で評価する。
論文 参考訳(メタデータ) (2021-02-11T18:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。