Convolutional Long Short-Term Memory Neural Networks Based Numerical Simulation of Flow Field
- URL: http://arxiv.org/abs/2505.15533v1
- Date: Wed, 21 May 2025 13:54:37 GMT
- Title: Convolutional Long Short-Term Memory Neural Networks Based Numerical Simulation of Flow Field
- Authors: Chang Liu,
- Abstract summary: An improved Convolutional Long Short-Term Memory (Con-vLSTM) Neural Network is proposed as the baseline network.<n> numerical simulations of flow around a circular cylinder were conducted.<n>Results demonstrate that the improved ConvLSTM model can extract more temporal and spatial features.
- Score: 3.9561033879611944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational Fluid Dynamics (CFD) is the main approach to analyzing flow field. However, the convergence and accuracy depend largely on mathematical models of flow, numerical methods, and time consumption. Deep learning-based analysis of flow filed provides an alternative. For the task of flow field prediction, an improved Convolutional Long Short-Term Memory (Con-vLSTM) Neural Network is proposed as the baseline network in consideration of the temporal and spatial characteristics of flow field. Combining dynamic mesh technology and User-Defined Function (UDF), numerical simulations of flow around a circular cylinder were conducted. Flow field snapshots were used to sample data from the cylinder's wake region at different time instants, constructing a flow field dataset with sufficient volume and rich flow state var-iations. Residual networks and attention mechanisms are combined with the standard ConvLSTM model. Compared with the standard ConvLSTM model, the results demonstrate that the improved ConvLSTM model can extract more temporal and spatial features while having fewer parameters and shorter train-ing time.
Related papers
- Component-Based Machine Learning for Indoor Flow and Temperature Fields Prediction Latent Feature Aggregation and Flow Interaction [22.85411632321514]
This study proposes a component-based machine learning (CBML) surrogate modeling approach to replace conventional CFD simulation.<n>CBML consists of three neural networks: a convolutional autoencoder with residual connections (CAER), a multilayer perceptron (MLP) and a convolutional neural network (CNN)<n>Results show that the CBML model accurately and fast predicts two-dimensional aggregated velocity fields across both training and testing datasets.
arXiv Detail & Related papers (2025-07-25T12:57:30Z) - FLEX: A Backbone for Diffusion-Based Modeling of Spatio-temporal Physical Systems [51.15230303652732]
FLEX (F Low EXpert) is a backbone architecture for generative modeling of-temporal physical systems.<n>It reduces the variance of the velocity field in the diffusion model, which helps stabilize training.<n>It achieves accurate predictions for super-resolution and forecasting tasks using as few features as two reverse diffusion steps.
arXiv Detail & Related papers (2025-05-23T00:07:59Z) - Learning Effective Dynamics across Spatio-Temporal Scales of Complex Flows [4.798951413107239]
We propose a novel framework, Graph-based Learning of Effective Dynamics (Graph-LED), that leverages graph neural networks (GNNs) and an attention-based autoregressive model.<n>We evaluate the proposed approach on a suite of fluid dynamics problems, including flow past a cylinder and flow over a backward-facing step over a range of Reynolds numbers.
arXiv Detail & Related papers (2025-02-11T22:14:30Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Normalizing flow neural networks by JKO scheme [22.320632565424745]
We develop a neural ODE flow network called JKO-iFlow, inspired by the Jordan-Kinderleherer-Otto scheme.
The proposed method stacks residual blocks one after another, allowing efficient block-wise training of the residual blocks.
Experiments with synthetic and real data show that the proposed JKO-iFlow network achieves competitive performance.
arXiv Detail & Related papers (2022-12-29T18:55:00Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Predicting the temporal dynamics of turbulent channels through deep
learning [0.0]
We aim to assess the capability of neural networks to reproduce the temporal evolution of a minimal turbulent channel flow.
Long-short-term-memory (LSTM) networks and a Koopman-based framework (KNF) are trained to predict the temporal dynamics of the minimal-channel-flow modes.
arXiv Detail & Related papers (2022-03-02T09:31:03Z) - Emulating Spatio-Temporal Realizations of Three-Dimensional Isotropic
Turbulence via Deep Sequence Learning Models [24.025975236316842]
We use a data-driven approach to model a three-dimensional turbulent flow using cutting-edge Deep Learning techniques.
The accuracy of the model is assessed using statistical and physics-based metrics.
arXiv Detail & Related papers (2021-12-07T03:33:39Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - Recurrent convolutional neural network for the surrogate modeling of
subsurface flow simulation [0.0]
We propose to combine SegNet with ConvLSTM layers for the surrogate modeling of numerical flow simulation.
Results show that the proposed method improves the performance of SegNet based surrogate model remarkably when the output of the simulation is time series data.
arXiv Detail & Related papers (2020-10-08T09:34:48Z) - STaRFlow: A SpatioTemporal Recurrent Cell for Lightweight Multi-Frame
Optical Flow Estimation [64.99259320624148]
We present a new lightweight CNN-based algorithm for multi-frame optical flow estimation.
The resulting STaRFlow algorithm gives state-of-the-art performances on MPI Sintel and Kitti2015.
arXiv Detail & Related papers (2020-07-10T17:01:34Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.