FLEX: A Backbone for Diffusion-Based Modeling of Spatio-temporal Physical Systems
- URL: http://arxiv.org/abs/2505.17351v1
- Date: Fri, 23 May 2025 00:07:59 GMT
- Title: FLEX: A Backbone for Diffusion-Based Modeling of Spatio-temporal Physical Systems
- Authors: N. Benjamin Erichson, Vinicius Mikuni, Dongwei Lyu, Yang Gao, Omri Azencot, Soon Hoe Lim, Michael W. Mahoney,
- Abstract summary: FLEX (F Low EXpert) is a backbone architecture for generative modeling of-temporal physical systems.<n>It reduces the variance of the velocity field in the diffusion model, which helps stabilize training.<n>It achieves accurate predictions for super-resolution and forecasting tasks using as few features as two reverse diffusion steps.
- Score: 51.15230303652732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce FLEX (FLow EXpert), a backbone architecture for generative modeling of spatio-temporal physical systems using diffusion models. FLEX operates in the residual space rather than on raw data, a modeling choice that we motivate theoretically, showing that it reduces the variance of the velocity field in the diffusion model, which helps stabilize training. FLEX integrates a latent Transformer into a U-Net with standard convolutional ResNet layers and incorporates a redesigned skip connection scheme. This hybrid design enables the model to capture both local spatial detail and long-range dependencies in latent space. To improve spatio-temporal conditioning, FLEX uses a task-specific encoder that processes auxiliary inputs such as coarse or past snapshots. Weak conditioning is applied to the shared encoder via skip connections to promote generalization, while strong conditioning is applied to the decoder through both skip and bottleneck features to ensure reconstruction fidelity. FLEX achieves accurate predictions for super-resolution and forecasting tasks using as few as two reverse diffusion steps. It also produces calibrated uncertainty estimates through sampling. Evaluations on high-resolution 2D turbulence data show that FLEX outperforms strong baselines and generalizes to out-of-distribution settings, including unseen Reynolds numbers, physical observables (e.g., fluid flow velocity fields), and boundary conditions.
Related papers
- Graph Flow Matching: Enhancing Image Generation with Neighbor-Aware Flow Fields [7.435063833417364]
Flow matching casts sample generation as learning a continuous-time velocity field that transports noise to data.<n>We propose Graph Flow Matching, a lightweight enhancement that decomposes the learned velocity into a reaction term.<n> operating in the latent space of a pretrained variational autoencoder.
arXiv Detail & Related papers (2025-05-30T10:17:50Z) - FR-Mamba: Time-Series Physical Field Reconstruction Based on State Space Model [9.340916033226604]
Physical field reconstruction aims to predict the state distribution of physical quantities based on limited sensor measurements.<n>Existing deep learning methods often fail to capture long-range temporal, time-evolving dependencies.<n>We propose FR-Mamba, a novel flow field reconstruction framework based on state space modeling.
arXiv Detail & Related papers (2025-05-21T23:54:36Z) - Biased Federated Learning under Wireless Heterogeneity [7.3716675761469945]
Federated learning (FL) is a promising framework for computation, enabling collaborative model training without sharing private data.<n>Existing wireless computation works primarily adopt two communication strategies: (1) over-the-air (OTA) which exploits wireless signal superposition, and (2) over-the-air (OTA) which allocates resources for convergence.<n>This paper proposes novel OTA and digital FL updates that allow a structured, time-in-place bias, thereby reducing variance in FL updates.
arXiv Detail & Related papers (2025-03-08T05:55:14Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Digital Over-the-Air Federated Learning in Multi-Antenna Systems [30.137208705209627]
We study the performance optimization of federated learning (FL) over a realistic wireless communication system with digital modulation and over-the-air computation (AirComp)
We propose a modified federated averaging (FedAvg) algorithm that combines digital modulation with AirComp to mitigate wireless fading while ensuring the communication efficiency.
An artificial neural network (ANN) is used to estimate the local FL models of all devices and adjust the beamforming matrices at the PS for future model transmission.
arXiv Detail & Related papers (2023-02-04T07:26:06Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids.
A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids.
We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes.
arXiv Detail & Related papers (2022-07-12T17:07:46Z) - Over-the-Air Federated Learning from Heterogeneous Data [107.05618009955094]
Federated learning (FL) is a framework for distributed learning of centralized models.
We develop a Convergent OTA FL (COTAF) algorithm which enhances the common local gradient descent (SGD) FL algorithm.
We numerically show that the precoding induced by COTAF notably improves the convergence rate and the accuracy of models trained via OTA FL.
arXiv Detail & Related papers (2020-09-27T08:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.