Impact of Data Sparsity on Machine Learning for Fault Detection in Power System Protection
- URL: http://arxiv.org/abs/2505.15560v1
- Date: Wed, 21 May 2025 14:17:58 GMT
- Title: Impact of Data Sparsity on Machine Learning for Fault Detection in Power System Protection
- Authors: Julian Oelhaf, Georg Kordowich, Changhun Kim, Paula Andrea Perez-Toro, Andreas Maier, Johann Jager, Siming Bayer,
- Abstract summary: Germany's transition to a renewable energy-based power system is reshaping grid operations, requiring advanced monitoring and control to manage decentralized generation.<n>Machine learning (ML) has emerged as a powerful tool for power system protection, particularly for fault detection (FD) and fault line identification (FLI) in transmission grids.<n>Data sparsity resulting from sensor failures, communication disruptions, or reduced sampling rates poses a challenge to ML-based FD and FLI.<n>We propose a framework to assess the impact of data sparsity on ML-based FD and FLI performance.
- Score: 2.755840398228561
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Germany's transition to a renewable energy-based power system is reshaping grid operations, requiring advanced monitoring and control to manage decentralized generation. Machine learning (ML) has emerged as a powerful tool for power system protection, particularly for fault detection (FD) and fault line identification (FLI) in transmission grids. However, ML model reliability depends on data quality and availability. Data sparsity resulting from sensor failures, communication disruptions, or reduced sampling rates poses a challenge to ML-based FD and FLI. Yet, its impact has not been systematically validated prior to this work. In response, we propose a framework to assess the impact of data sparsity on ML-based FD and FLI performance. We simulate realistic data sparsity scenarios, evaluate their impact, derive quantitative insights, and demonstrate the effectiveness of this evaluation strategy by applying it to an existing ML-based framework. Results show the ML model remains robust for FD, maintaining an F1-score of 0.999 $\pm$ 0.000 even after a 50x data reduction. In contrast, FLI is more sensitive, with performance decreasing by 55.61% for missing voltage measurements and 9.73% due to communication failures at critical network points. These findings offer actionable insights for optimizing ML models for real-world grid protection. This enables more efficient FD and supports targeted improvements in FLI.
Related papers
- Machine Learning-Based Cyberattack Detection and Identification for Automatic Generation Control Systems Considering Nonlinearities [0.6144680854063939]
AGC systems' reliance on communicated measurements exposes them to false data injection attacks (FDIAs)<n>This paper proposes a machine learning (ML)-based detection framework that identifies FDIAs and determines the compromised measurements.<n>Our results demonstrate the efficacy of the proposed method in detecting FDIAs while maintaining a low false alarm rate, with an F1-score of up to 99.98%, outperforming existing approaches.
arXiv Detail & Related papers (2025-04-12T23:06:59Z) - Enhancing Cybersecurity in Critical Infrastructure with LLM-Assisted Explainable IoT Systems [0.22369578015657962]
This paper presents a hybrid framework that combines numerical anomaly detection using Autoencoders with Large Language Models (LLMs) for enhanced preprocessing and interpretability.<n> Experimental results on the KDDCup99 10% corrected dataset demonstrate that the LLM-assisted preprocessing pipeline significantly improves anomaly detection performance.
arXiv Detail & Related papers (2025-03-05T04:53:07Z) - Network Resource Optimization for ML-Based UAV Condition Monitoring with Vibration Analysis [54.550658461477106]
Condition Monitoring (CM) uses Machine Learning (ML) models to identify abnormal and adverse conditions.<n>This work explores the optimization of network resources for ML-based UAV CM frameworks.<n>By leveraging dimensionality reduction techniques, there is a 99.9% reduction in network resource consumption.
arXiv Detail & Related papers (2025-02-21T14:36:12Z) - Confident or Seek Stronger: Exploring Uncertainty-Based On-device LLM Routing From Benchmarking to Generalization [61.02719787737867]
Large language models (LLMs) are increasingly deployed and democratized on edge devices.<n>One promising solution is uncertainty-based SLM routing, offloading high-stakes queries to stronger LLMs when resulting in low-confidence responses on SLM.<n>We conduct a comprehensive investigation into benchmarking and generalization of uncertainty-driven routing strategies from SLMs to LLMs over 1500+ settings.
arXiv Detail & Related papers (2025-02-06T18:59:11Z) - AI-Powered Dynamic Fault Detection and Performance Assessment in Photovoltaic Systems [44.99833362998488]
intermittent nature of photovoltaic (PV) solar energy leads to power losses of 10-70% and an average energy production decrease of 25%.
Current fault detection strategies are costly and often yield unreliable results due to complex data signal profiles.
This research presents a computational model using the PVlib library in Python, incorporating a dynamic loss quantification algorithm.
arXiv Detail & Related papers (2024-08-19T23:52:06Z) - LaFA: Latent Feature Attacks on Non-negative Matrix Factorization [3.45173496229657]
We introduce a novel class of attacks in NMF termed Latent Feature Attacks (LaFA)
Our method utilizes the Feature Error (FE) loss directly on the latent features.
To handle large peak-memory overhead gradient from back-propagation in FE attacks, we develop a method based on implicit differentiation.
arXiv Detail & Related papers (2024-08-07T17:13:46Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
We introduce a novel approach to anomaly detection in financial data using Large Language Models (LLMs) embeddings.
Our experiments demonstrate that LLMs contribute valuable information to anomaly detection as our models outperform the baselines.
arXiv Detail & Related papers (2024-06-05T20:19:09Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Machine Learning Data Suitability and Performance Testing Using Fault
Injection Testing Framework [0.0]
This paper presents the Fault Injection for Undesirable Learning in input Data (FIUL-Data) testing framework.
Data mutators explore vulnerabilities of ML systems against the effects of different fault injections.
This paper evaluates the framework using data from analytical chemistry, comprising retention time measurements of anti-sense oligonucleotides.
arXiv Detail & Related papers (2023-09-20T12:58:35Z) - A Generative Framework for Low-Cost Result Validation of Machine Learning-as-a-Service Inference [4.478182379059458]
Fides is a novel framework for real-time integrity validation of ML-as-a-Service (ML) inference.
Fides features a client-side attack detection model that uses statistical analysis and divergence measurements to identify, with a high likelihood, if the service model is under attack.
We devised a generative adversarial network framework for training the attack detection and re-classification models.
arXiv Detail & Related papers (2023-03-31T19:17:30Z) - Machine Learning for QoS Prediction in Vehicular Communication:
Challenges and Solution Approaches [46.52224306624461]
We consider maximum throughput prediction enhancing, for example, streaming or high-definition mapping applications.
We highlight how confidence can be built on machine learning technologies by better understanding the underlying characteristics of the collected data.
We use explainable AI to show that machine learning can learn underlying principles of wireless networks without being explicitly programmed.
arXiv Detail & Related papers (2023-02-23T12:29:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.