Federated Learning with Unlabeled Clients: Personalization Can Happen in Low Dimensions
- URL: http://arxiv.org/abs/2505.15579v1
- Date: Wed, 21 May 2025 14:30:59 GMT
- Title: Federated Learning with Unlabeled Clients: Personalization Can Happen in Low Dimensions
- Authors: Hossein Zakerinia, Jonathan Scott, Christoph H. Lampert,
- Abstract summary: FLowDUP is able to generate a personalized model using only a forward pass with unlabeled data.<n>New transductive multi-task PAC-Bayesian generalization bound provides performance guarantees for unlabeled clients.
- Score: 16.161876130822396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalized federated learning has emerged as a popular approach to training on devices holding statistically heterogeneous data, known as clients. However, most existing approaches require a client to have labeled data for training or finetuning in order to obtain their own personalized model. In this paper we address this by proposing FLowDUP, a novel method that is able to generate a personalized model using only a forward pass with unlabeled data. The generated model parameters reside in a low-dimensional subspace, enabling efficient communication and computation. FLowDUP's learning objective is theoretically motivated by our new transductive multi-task PAC-Bayesian generalization bound, that provides performance guarantees for unlabeled clients. The objective is structured in such a way that it allows both clients with labeled data and clients with only unlabeled data to contribute to the training process. To supplement our theoretical results we carry out a thorough experimental evaluation of FLowDUP, demonstrating strong empirical performance on a range of datasets with differing sorts of statistically heterogeneous clients. Through numerous ablation studies, we test the efficacy of the individual components of the method.
Related papers
- Not All Clients Are Equal: Personalized Federated Learning on Heterogeneous Multi-Modal Clients [52.14230635007546]
Foundation models have shown remarkable capabilities across diverse multi-modal tasks, but their centralized training raises privacy concerns and induces high transmission costs.<n>For the growing demand for personalizing AI models for different user purposes, personalized federated learning (PFL) has emerged.<n>PFL allows each client to leverage the knowledge of other clients for further adaptation to individual user preferences, again without the need to share data.
arXiv Detail & Related papers (2025-05-20T09:17:07Z) - Personalized Federated Learning with Mixture of Models for Adaptive Prediction and Model Fine-Tuning [22.705411388403036]
This paper develops a novel personalized federated learning algorithm.
Each client constructs a personalized model by combining a locally fine-tuned model with multiple federated models.
Theoretical analysis and experiments on real datasets corroborate the effectiveness of this approach.
arXiv Detail & Related papers (2024-10-28T21:20:51Z) - Personalized Federated Learning via Amortized Bayesian Meta-Learning [21.126405589760367]
We introduce a new perspective on personalized federated learning through Amortized Bayesian Meta-Learning.
Specifically, we propose a novel algorithm called emphFedABML, which employs hierarchical variational inference across clients.
Our theoretical analysis provides an upper bound on the average generalization error and guarantees the generalization performance on unseen data.
arXiv Detail & Related papers (2023-07-05T11:58:58Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Personalized Federated Learning by Structured and Unstructured Pruning
under Data Heterogeneity [3.291862617649511]
We propose a new approach for obtaining a personalized model from a client-level objective.
To realize this personalization, we leverage finding a small subnetwork for each client.
arXiv Detail & Related papers (2021-05-02T22:10:46Z) - PFA: Privacy-preserving Federated Adaptation for Effective Model
Personalization [6.66389628571674]
Federated learning (FL) has become a prevalent distributed machine learning paradigm with improved privacy.
This paper introduces a new concept called federated adaptation, targeting at adapting the trained model in a federated manner to achieve better personalization results.
We propose PFA, a framework to accomplish Privacy-preserving Federated Adaptation.
arXiv Detail & Related papers (2021-03-02T08:07:34Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.