論文の概要: UWSAM: Segment Anything Model Guided Underwater Instance Segmentation and A Large-scale Benchmark Dataset
- arxiv url: http://arxiv.org/abs/2505.15581v1
- Date: Wed, 21 May 2025 14:36:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:59.70198
- Title: UWSAM: Segment Anything Model Guided Underwater Instance Segmentation and A Large-scale Benchmark Dataset
- Title(参考訳): UWSAM: 水中インスタンスセグメンテーションガイド付きセグメンテーションモデルと大規模ベンチマークデータセット
- Authors: Hua Li, Shijie Lian, Zhiyuan Li, Runmin Cong, Sam Kwong,
- Abstract要約: 大規模な水中インスタンスセグメンテーションデータセットであるUIIS10Kを提案する。
次に,水中インスタンスの自動・高精度セグメンテーションのための効率的なモデルであるUWSAMを紹介する。
複数の水中インスタンスデータセット上での最先端手法よりも優れた性能向上を実現し,本モデルの有効性を示す。
- 参考スコア(独自算出の注目度): 62.00529957144851
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With recent breakthroughs in large-scale modeling, the Segment Anything Model (SAM) has demonstrated significant potential in a variety of visual applications. However, due to the lack of underwater domain expertise, SAM and its variants face performance limitations in end-to-end underwater instance segmentation tasks, while their higher computational requirements further hinder their application in underwater scenarios. To address this challenge, we propose a large-scale underwater instance segmentation dataset, UIIS10K, which includes 10,048 images with pixel-level annotations for 10 categories. Then, we introduce UWSAM, an efficient model designed for automatic and accurate segmentation of underwater instances. UWSAM efficiently distills knowledge from the SAM ViT-Huge image encoder into the smaller ViT-Small image encoder via the Mask GAT-based Underwater Knowledge Distillation (MG-UKD) method for effective visual representation learning. Furthermore, we design an End-to-end Underwater Prompt Generator (EUPG) for UWSAM, which automatically generates underwater prompts instead of explicitly providing foreground points or boxes as prompts, thus enabling the network to locate underwater instances accurately for efficient segmentation. Comprehensive experimental results show that our model is effective, achieving significant performance improvements over state-of-the-art methods on multiple underwater instance datasets. Datasets and codes are available at https://github.com/LiamLian0727/UIIS10K.
- Abstract(参考訳): 最近の大規模モデリングのブレークスルーにより、SAM(Segment Anything Model)は様々な視覚的アプリケーションにおいて大きな可能性を示してきた。
しかし、水中ドメインの専門知識が不足しているため、SAMとその変種は、エンドツーエンドの水中インスタンスセグメンテーションタスクにおいてパフォーマンス上の制限に直面している。
この課題に対処するために,大規模な水中インスタンスセグメンテーションデータセットであるUIIS10Kを提案する。
次に,水中インスタンスの自動・高精度セグメンテーションのための効率的なモデルであるUWSAMを紹介する。
UWSAMは、SAM ViT-Huge画像エンコーダからの知識を、Mask GATベースの水中知識蒸留(MG-UKD)法によるより小さなViT-Small画像エンコーダに効率よく蒸留し、効果的な視覚表現学習を行う。
さらに,UWSAM用エンド・ツー・エンド水中プロンプトジェネレータ(EUPG)を設計し,前景点やボックスをプロンプトとして明示的に提供するのではなく,水中プロンプトを自動的に生成する。
総合的な実験結果から,本モデルの有効性が示唆され,複数の水中インスタンスデータセット上での最先端手法よりも高い性能向上が得られた。
データセットとコードはhttps://github.com/LiamLian0727/UIIS10Kで入手できる。
関連論文リスト
- Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance(UOIS)は、非構造環境で動作する自律ロボットにとって不可欠である。
UOISタスクのためのデータ効率のよいソリューションであるUOIS-SAMを提案する。
UOIS-SAMは、(i)HeatmapベースのPrompt Generator(HPG)と(ii)SAMのマスクデコーダに適応する階層識別ネットワーク(HDNet)の2つの重要なコンポーネントを統合する。
論文 参考訳(メタデータ) (2024-09-23T19:05:50Z) - Evaluation of Segment Anything Model 2: The Role of SAM2 in the Underwater Environment [2.0554501265326794]
Segment Anything Model(SAM)とその拡張は、海洋科学における様々な水中可視化タスクに応用するために試みられている。
近年,Segment Anything Model 2 (SAM2) が開発され,実行速度とセグメンテーション精度が大幅に向上した。
本報告は, 海洋科学におけるSAM2の可能性について, UIIS と USIS10K をベンチマークした水中インスタンスセグメンテーションデータセットを用いて検討することを目的とする。
論文 参考訳(メタデータ) (2024-08-06T03:20:10Z) - Diving into Underwater: Segment Anything Model Guided Underwater Salient Instance Segmentation and A Large-scale Dataset [60.14089302022989]
水中視覚タスクは複雑な水中状況のため、しばしばセグメンテーションの精度が低い。
第1次大規模水中塩分分節データセット(USIS10K)を構築した。
本研究では,水中ドメインに特化してセグメンツ・ア・シング・モデル(USIS-SAM)に基づく水中塩分・インスタンス・アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-06-10T06:17:33Z) - MAS-SAM: Segment Any Marine Animal with Aggregated Features [55.91291540810978]
そこで本研究では,海洋生物のセグメンテーションのためのMAS-SAMという新しい特徴学習フレームワークを提案する。
本手法により,グローバルな文脈的手がかりからよりリッチな海洋情報を抽出し,よりきめ細かな局部的詳細を抽出できる。
論文 参考訳(メタデータ) (2024-04-24T07:38:14Z) - Fantastic Animals and Where to Find Them: Segment Any Marine Animal with Dual SAM [62.85895749882285]
海洋動物(英: Marine Animal、MAS)は、海洋環境に生息する動物を分類する動物である。
高性能MASのための新しい特徴学習フレームワークDual-SAMを提案する。
提案手法は,広く使用されている5つのMASデータセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-04-07T15:34:40Z) - SVAM: Saliency-guided Visual Attention Modeling by Autonomous Underwater
Robots [16.242924916178282]
本稿では,自律型水中ロボットの視覚的注意モデル(SVAM)に対する総合的なアプローチを提案する。
提案するSVAM-Netは,様々なスケールの深部視覚的特徴を統合し,自然水中画像に有効なSOD(Salient Object Detection)を実現する。
論文 参考訳(メタデータ) (2020-11-12T08:17:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。