VP Lab: a PEFT-Enabled Visual Prompting Laboratory for Semantic Segmentation
- URL: http://arxiv.org/abs/2505.15592v1
- Date: Wed, 21 May 2025 14:46:57 GMT
- Title: VP Lab: a PEFT-Enabled Visual Prompting Laboratory for Semantic Segmentation
- Authors: Niccolo Avogaro, Thomas Frick, Yagmur G. Cinar, Daniel Caraballo, Cezary Skura, Filip M. Janicki, Piotr Kluska, Brown Ebouky, Nicola Farronato, Florian Scheidegger, Cristiano Malossi, Konrad Schindler, Andrea Bartezzaghi, Roy Assaf, Mattia Rigotti,
- Abstract summary: VP Lab is a comprehensive iterative framework that enhances visual prompting for robust segmentation model development.<n>E-PEFT is a novel ensemble of parameter-efficient fine-tuning techniques designed to adapt our visual prompting pipeline to specific domains.<n>By integrating E-PEFT with visual prompting, we demonstrate a remarkable 50% increase in semantic segmentation mIoU performance across various technical datasets.
- Score: 18.680875997611025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale pretrained vision backbones have transformed computer vision by providing powerful feature extractors that enable various downstream tasks, including training-free approaches like visual prompting for semantic segmentation. Despite their success in generic scenarios, these models often fall short when applied to specialized technical domains where the visual features differ significantly from their training distribution. To bridge this gap, we introduce VP Lab, a comprehensive iterative framework that enhances visual prompting for robust segmentation model development. At the core of VP Lab lies E-PEFT, a novel ensemble of parameter-efficient fine-tuning techniques specifically designed to adapt our visual prompting pipeline to specific domains in a manner that is both parameter- and data-efficient. Our approach not only surpasses the state-of-the-art in parameter-efficient fine-tuning for the Segment Anything Model (SAM), but also facilitates an interactive, near-real-time loop, allowing users to observe progressively improving results as they experiment within the framework. By integrating E-PEFT with visual prompting, we demonstrate a remarkable 50\% increase in semantic segmentation mIoU performance across various technical datasets using only 5 validated images, establishing a new paradigm for fast, efficient, and interactive model deployment in new, challenging domains. This work comes in the form of a demonstration.
Related papers
- DA-VPT: Semantic-Guided Visual Prompt Tuning for Vision Transformers [13.964106147449051]
We leverage metric learning techniques to investigate how the distribution of prompts affects fine-tuning performance.<n>We propose a novel framework, Distribution Aware Visual Prompt Tuning (DA-VPT), to guide the distributions of the prompts.<n>Our method demonstrates that the prompts can serve as an effective bridge to share semantic information between image patches and the class token.
arXiv Detail & Related papers (2025-05-29T17:31:26Z) - Flex: End-to-End Text-Instructed Visual Navigation from Foundation Model Features [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.<n>Our findings are synthesized in Flex (Fly lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.<n>We demonstrate the effectiveness of this approach on a quadrotor fly-to-target task, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
In-context learning (ICL) allows transformer-based language models to learn a specific task with a few "task demonstrations" without updating their parameters.<n>We propose an influence function-based attribution technique, DETAIL, that addresses the specific characteristics of ICL.<n>We experimentally prove the wide applicability of DETAIL by showing our attribution scores obtained on white-box models are transferable to black-box models in improving model performance.
arXiv Detail & Related papers (2024-05-22T15:52:52Z) - Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning [13.964106147449051]
Existing solutions concentrate on fine-tuning the pre-trained models on conventional image datasets.
We propose a novel and effective framework based on learning Visual Prompts (VPT) in the pre-trained Vision Transformers (ViT)
We demonstrate that our new approximations with semantic information are superior to representative capabilities.
arXiv Detail & Related papers (2024-02-04T04:42:05Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
We propose a simple yet effective scheme to harness a diffusion model for visual perception tasks.
We introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception.
Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes.
arXiv Detail & Related papers (2023-12-22T14:40:55Z) - MA-FSAR: Multimodal Adaptation of CLIP for Few-Shot Action Recognition [41.78245303513613]
We introduce MA-FSAR, a framework that employs the Fine-Tuning (PEFT) technique to enhance the CLIP visual encoder in terms of action-related temporal and semantic representations.
In addition to these token-level designs, we propose a prototype-level text-guided construction module to further enrich the temporal and semantic characteristics of video prototypes.
arXiv Detail & Related papers (2023-08-03T04:17:25Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Towards a Unified View on Visual Parameter-Efficient Transfer Learning [96.99924127527002]
We propose a framework with a unified view called visual-PETL (V-PETL) to investigate the different aspects affecting the trade-off.
An effective scheme Swin-BAPAT derived from the proposed V-PETL framework achieves significantly better performance than the state-of-the-art AdaptFormer-Swin.
arXiv Detail & Related papers (2022-10-03T09:54:39Z) - Prompt-Matched Semantic Segmentation [96.99924127527002]
The objective of this work is to explore how to effectively adapt pre-trained foundation models to various downstream tasks of image semantic segmentation.
We propose a novel Inter-Stage Prompt-Matched Framework, which maintains the original structure of the foundation model while generating visual prompts adaptively for task-oriented tuning.
A lightweight module termed Semantic-aware Prompt Matcher is then introduced to hierarchically interpolate between two stages to learn reasonable prompts for each specific task.
arXiv Detail & Related papers (2022-08-22T09:12:53Z) - Reviving Iterative Training with Mask Guidance for Interactive
Segmentation [8.271859911016719]
Recent works on click-based interactive segmentation have demonstrated state-of-the-art results by using various inference-time optimization schemes.
We propose a simple feedforward model for click-based interactive segmentation that employs the segmentation masks from previous steps.
We find that the models trained on a combination of COCO and LVIS with diverse and high-quality annotations show performance superior to all existing models.
arXiv Detail & Related papers (2021-02-12T15:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.