論文の概要: UniErase: Towards Balanced and Precise Unlearning in Language Models
- arxiv url: http://arxiv.org/abs/2505.15674v2
- Date: Fri, 26 Sep 2025 01:52:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 14:23:57.365533
- Title: UniErase: Towards Balanced and Precise Unlearning in Language Models
- Title(参考訳): UniErase: 言語モデルにおけるバランスと高精度のアンラーニングを目指して
- Authors: Miao Yu, Liang Lin, Guibin Zhang, Xinfeng Li, Junfeng Fang, Xingrui Yu, Ivor Tsang, Ningyu Zhang, Kun Wang, Yang Wang,
- Abstract要約: 大規模言語モデル(LLM)は、古い情報問題に対処するために反復的な更新を必要とする。
UniEraseは、知識の未学習と能力保持の間の精度とバランスの取れたパフォーマンスを示す、新しいアンラーニングフレームワークである。
- 参考スコア(独自算出の注目度): 69.04923022755547
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) require iterative updates to address the outdated information problem, where LLM unlearning offers an approach for selective removal. However, mainstream unlearning methods primarily rely on fine-tuning techniques, which often lack precision in targeted unlearning and struggle to balance unlearning efficacy with general ability under massive and sequential settings. To bridge this gap, in this work, we introduce UniErase, a novel unlearning framework that demonstrates precision and balanced performances between knowledge unlearning and ability retaining. We first propose the Unlearning Token, which is optimized to steer LLMs toward a forgetting space. To achieve concrete unlearning behaviors, we further introduce the lightweight Unlearning Edit to efficiently associate the unlearning targets with this meta-token. Serving as a new unlearning paradigm via editing, UniErase achieves outstanding performances across batch, sequential, and precise unlearning tasks under fictitious and real-world knowledge scenarios. On the TOFU benchmark, compared with 8 baselines, UniErase, modifying only $\sim$ \textbf{3.66%} of the LLM parameters, outperforms the previous best-forgetting baseline by \textbf{$\sim$ 4.01$\times$} for \textbf{model ability} with even higher unlearning efficacy. Similarly, UniErase, with better ability retention, also surpasses the previous best-retaining method by \textbf{35.96%} for \textbf{unlearning efficacy}, showing balanced and dual top-tier performances in the current unlearning community.
- Abstract(参考訳): 大規模言語モデル(LLM)は、古い情報問題に対処するために反復的な更新を必要とする。
しかし、主流のアンラーニング手法は主に微調整技術に依存しており、ターゲットとなるアンラーニングの精度に欠けることが多く、大規模でシーケンシャルな設定下での一般的な能力と非ラーニングの有効性のバランスがとれない。
このギャップを埋めるために、我々はUniEraseという新しいアンラーニングフレームワークを紹介します。
まず,LLM を忘れる空間に最適化した Unlearning Token を提案する。
具体的な未学習動作を実現するために,このメタトークンと学習対象を効率的に関連付ける軽量なアンラーニング編集を導入する。
編集による新しいアンラーニングパラダイムとして、UniEraseは、架空の実世界の知識シナリオの下で、バッチ、シーケンシャル、そして正確なアンラーニングタスクで優れたパフォーマンスを達成する。
TOFUベンチマークでは、LLMパラメータの$\sim$ \textbf{3.66%}だけを変更したUniEraseの8つのベースラインと比較すると、より高い未学習の有効性を持つように、以前のベストプラクティスベースラインを \textbf{$\sim$ 4.01$\times$} で上回っている。
同様に、UniEraseは能力の保持性を向上し、現在のアンラーニングコミュニティにおいてバランスの取れた2つのトップレベルのパフォーマンスを示す。
関連論文リスト
- Forgetting: A New Mechanism Towards Better Large Language Model Fine-tuning [53.398270878295754]
Supervised Fine-tuning (SFT) は、事前訓練された大規模言語モデル (LLM) において重要な役割を果たす。
各コーパス内のトークンを、モデルパフォーマンスを改善するのに有用かどうかに基づいて、正と負の2つの部分に分類することを提案する。
我々は、よく確立されたベンチマークで実験を行い、この忘れるメカニズムが全体のモデル性能を向上するだけでなく、より多様なモデル応答を促進することを発見した。
論文 参考訳(メタデータ) (2025-08-06T11:22:23Z) - Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
インフルエンサーベースのアンラーニングは、個別のトレーニングサンプルがモデルパラメータに与える影響を再トレーニングせずに推定する顕著なアプローチとして現れてきた。
本稿では,暗記(増分学習)と忘れ(未学習)の理論的関連性を確立する。
本稿では、インフルエンス近似アンラーニングアルゴリズムを導入し、インクリメンタルな視点から効率的なマシンアンラーニングを行う。
論文 参考訳(メタデータ) (2025-07-31T05:34:27Z) - Unified Parameter-Efficient Unlearning for LLMs [25.195126838721492]
大規模言語モデル(LLM)は自然言語処理に革命をもたらし、様々なタスクに対する高度な理解と推論を可能にする。
これは、モデルが不注意に機密情報や望ましくない情報を保持および拡散する可能性があるため、重要なプライバシーとセキュリティ上の懸念を提起する。
本稿では,非学習タスクを体系的に分類し,影響関数を用いた高精度な調整を行う,新しいインスタンス単位のアンラーニングフレームワークLLMEraserを紹介する。
論文 参考訳(メタデータ) (2024-11-30T07:21:02Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
3つのコアコンポーネントで構成されるICU(Iterative Contrastive Unlearning)フレームワークを紹介する。
知識未学習誘導モジュールは、未学習の損失を使用して、特定の知識を除去するためにターゲットとする。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を保持する。
イテレーティブ・アンラーニング・リファインメントモジュールは、進行中の評価と更新を通じて、アンラーニングプロセスを動的に調整する。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - Learning to Unlearn for Robust Machine Unlearning [6.488418950340473]
学習過程を最適化する新しいLTU(Learning-to-Unlearn)フレームワークを提案する。
LTUは、モデルが一般化可能な知識を効果的に保存することを容易にするメタ最適化スキームを含んでいる。
また、記憶と忘れのための最適化トラジェクトリを整列するグラディエント調和戦略も導入する。
論文 参考訳(メタデータ) (2024-07-15T07:36:00Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
本稿では,大規模言語モデルにおける機械学習評価の精度向上を図る。
評価指標の堅牢性と、競合する目標間のトレードオフという、2つの重要な課題に対処します。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - UNDIAL: Self-Distillation with Adjusted Logits for Robust Unlearning in Large Language Models [12.45822383965784]
本稿では,UnDIAL(Unlearning via Self-Distillation on Adjusted Logits)を紹介する。
本手法では, 自己蒸留を利用してロジットを調整し, ターゲットトークンの影響を選択的に低減する。
論文 参考訳(メタデータ) (2024-02-15T16:21:14Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
最近のデータ規制要件に応えて、マシン・アンラーニング(MU)が重要なプロセスとして登場した。
本研究は,ウェイトプルーニングによるモデルスペーシフィケーションという,新しいモデルベース視点を紹介する。
理論と実践の両方において、モデルスパーシティは、近似アンラーナーのマルチ基準アンラーニング性能を高めることができることを示す。
論文 参考訳(メタデータ) (2023-04-11T02:12:02Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
そこで我々は,ブラックボックス・アタベラル・リプログラミング (BAR) という新しい手法を提案する。
ゼロオーダー最適化とマルチラベルマッピング技術を用いて、BARは入力出力応答のみに基づいてブラックボックスMLモデルをプログラムする。
BARは最先端の手法より優れ、バニラ対逆プログラミング法に匹敵する性能を得る。
論文 参考訳(メタデータ) (2020-07-17T01:52:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。