論文の概要: UAV-Flow Colosseo: A Real-World Benchmark for Flying-on-a-Word UAV Imitation Learning
- arxiv url: http://arxiv.org/abs/2505.15725v1
- Date: Wed, 21 May 2025 16:31:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 14:49:22.626194
- Title: UAV-Flow Colosseo: A Real-World Benchmark for Flying-on-a-Word UAV Imitation Learning
- Title(参考訳): UAV-Flow Colosseo: 単語によるUAV模倣学習のための実世界のベンチマーク
- Authors: Xiangyu Wang, Donglin Yang, Yue Liao, Wenhao Zheng, wenjun wu, Bin Dai, Hongsheng Li, Si Liu,
- Abstract要約: 無人航空機(UAV)は言語と対話するプラットフォームへと進化し、より直感的な人間とドローンの相互作用を可能にしている。
本研究では,この問題をFlying-on-a-Word(Flow)タスクとして形式化し,UAV模倣学習を効果的なアプローチとして導入する。
UAV-Flowは, 言語条件付き, きめ細かいUAV制御のための, 世界初の実世界のベンチマークである。
- 参考スコア(独自算出の注目度): 39.07541452390107
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unmanned Aerial Vehicles (UAVs) are evolving into language-interactive platforms, enabling more intuitive forms of human-drone interaction. While prior works have primarily focused on high-level planning and long-horizon navigation, we shift attention to language-guided fine-grained trajectory control, where UAVs execute short-range, reactive flight behaviors in response to language instructions. We formalize this problem as the Flying-on-a-Word (Flow) task and introduce UAV imitation learning as an effective approach. In this framework, UAVs learn fine-grained control policies by mimicking expert pilot trajectories paired with atomic language instructions. To support this paradigm, we present UAV-Flow, the first real-world benchmark for language-conditioned, fine-grained UAV control. It includes a task formulation, a large-scale dataset collected in diverse environments, a deployable control framework, and a simulation suite for systematic evaluation. Our design enables UAVs to closely imitate the precise, expert-level flight trajectories of human pilots and supports direct deployment without sim-to-real gap. We conduct extensive experiments on UAV-Flow, benchmarking VLN and VLA paradigms. Results show that VLA models are superior to VLN baselines and highlight the critical role of spatial grounding in the fine-grained Flow setting.
- Abstract(参考訳): 無人航空機(UAV)は言語と対話するプラットフォームへと進化し、より直感的な人間とドローンの相互作用を可能にしている。
先行研究は主に高レベルな計画と長距離航法に重点を置いているが、我々は、UAVが言語指示に応じて短距離で反応的な飛行行動を実行するような、言語誘導された微粒な軌道制御に注意を向けている。
本研究では,この問題をFlying-on-a-Word(Flow)タスクとして形式化し,UAV模倣学習を効果的なアプローチとして導入する。
このフレームワークでは、UAVは専門家のパイロット軌道を原子言語命令と組み合わせることで、きめ細かい制御ポリシーを学習する。
このパラダイムをサポートするために、我々は、言語条件付き、きめ細かいUAV制御のための最初の実世界ベンチマークであるUAV-Flowを紹介する。
タスクの定式化、さまざまな環境で収集された大規模なデータセット、デプロイ可能なコントロールフレームワーク、システマティック評価のためのシミュレーションスイートが含まれている。
我々の設計では、UAVは人間のパイロットの精密で専門家レベルの飛行軌跡を忠実に模倣することができ、シミュレート・トゥ・リアルのギャップなしに直接展開できる。
VLN と VLA のパラダイムをベンチマークした UAV-Flow に関する広範な実験を行った。
その結果、VLAモデルはVLNベースラインよりも優れており、細粒度フロー設定における空間接地の重要性を強調している。
関連論文リスト
- UAV-VLN: End-to-End Vision Language guided Navigation for UAVs [0.0]
AI誘導の自律性における中核的な課題は、エージェントが以前見えなかった環境で現実的で効果的にナビゲートできるようにすることである。
UAV-VLNは無人航空機(UAV)のための新しいエンドツーエンドビジョンランゲージナビゲーションフレームワークである。
本システムでは,自由形式の自然言語命令を解釈し,視覚的観察に利用し,多様な環境下で実現可能な航空軌道を計画する。
論文 参考訳(メタデータ) (2025-04-30T08:40:47Z) - More Clear, More Flexible, More Precise: A Comprehensive Oriented Object Detection benchmark for UAV [58.89234732689013]
CODroneは、現実の状況を正確に反映した、UAVのための包括的なオブジェクト指向オブジェクト検出データセットである。
また、下流のタスク要求に合わせて設計された新しいベンチマークとしても機能する。
我々は、CODroneを厳格に評価するために、22の古典的またはSOTA法に基づく一連の実験を行う。
論文 参考訳(メタデータ) (2025-04-28T17:56:02Z) - UAVs Meet LLMs: Overviews and Perspectives Toward Agentic Low-Altitude Mobility [33.73170899086857]
無人航空機(UAV)に代表される低高度機動性は、様々な領域に変革をもたらす。
本稿では,大規模言語モデル(LLM)とUAVの統合について検討する。
UAVとLLMが収束する主要なタスクとアプリケーションシナリオを分類し分析する。
論文 参考訳(メタデータ) (2025-01-04T17:32:12Z) - Integrating Large Language Models for UAV Control in Simulated Environments: A Modular Interaction Approach [0.3495246564946556]
本研究では,UAV制御における大規模言語モデルの適用について検討する。
UAVが自然言語コマンドを解釈し、応答できるようにすることで、LLMはUAVの制御と使用を簡素化する。
本稿では,自律的な意思決定,動的なミッション計画,状況認識の向上,安全プロトコルの改善など,LCMがUAV技術に影響を与えるいくつかの重要な領域について論じる。
論文 参考訳(メタデータ) (2024-10-23T06:56:53Z) - Towards Realistic UAV Vision-Language Navigation: Platform, Benchmark, and Methodology [38.2096731046639]
UAV視覚言語ナビゲーションにおける最近の取り組みは、主に地上ベースのVLN設定を採用する。
プラットフォーム,ベンチマーク,方法論という3つの観点からのソリューションを提案する。
論文 参考訳(メタデータ) (2024-10-09T17:29:01Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV)は、商業とレクリエーションの両方に多くの応用を提供している。
我々は、UAVを追跡し、位置や軌道などの豊富な情報を提供するという課題を考察する。
300以上のビデオペアが580k以上の手動で注釈付きバウンディングボックスを含むデータセット、Anti-UAVを提案します。
論文 参考訳(メタデータ) (2021-01-21T07:00:15Z) - Federated Learning in the Sky: Joint Power Allocation and Scheduling
with UAV Swarms [98.78553146823829]
無人航空機(UAV)は様々なタスクを実行するために機械学習(ML)を利用する必要がある。
本稿では,UAVスワム内に分散学習(FL)アルゴリズムを実装するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T14:04:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。