Alignment Under Pressure: The Case for Informed Adversaries When Evaluating LLM Defenses
- URL: http://arxiv.org/abs/2505.15738v1
- Date: Wed, 21 May 2025 16:43:17 GMT
- Title: Alignment Under Pressure: The Case for Informed Adversaries When Evaluating LLM Defenses
- Authors: Xiaoxue Yang, Bozhidar Stevanoski, Matthieu Meeus, Yves-Alexandre de Montjoye,
- Abstract summary: Alignment is one of the main approaches used to defend against attacks such as prompt injection and jailbreaks.<n>Recent defenses report near-zero Attack Success Rates (ASR) even against Greedy Coordinate Gradient (GCG)
- Score: 6.736255552371404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are rapidly deployed in real-world applications ranging from chatbots to agentic systems. Alignment is one of the main approaches used to defend against attacks such as prompt injection and jailbreaks. Recent defenses report near-zero Attack Success Rates (ASR) even against Greedy Coordinate Gradient (GCG), a white-box attack that generates adversarial suffixes to induce attacker-desired outputs. However, this search space over discrete tokens is extremely large, making the task of finding successful attacks difficult. GCG has, for instance, been shown to converge to local minima, making it sensitive to initialization choices. In this paper, we assess the future-proof robustness of these defenses using a more informed threat model: attackers who have access to some information about the alignment process. Specifically, we propose an informed white-box attack leveraging the intermediate model checkpoints to initialize GCG, with each checkpoint acting as a stepping stone for the next one. We show this approach to be highly effective across state-of-the-art (SOTA) defenses and models. We further show our informed initialization to outperform other initialization methods and show a gradient-informed checkpoint selection strategy to greatly improve attack performance and efficiency. Importantly, we also show our method to successfully find universal adversarial suffixes -- single suffixes effective across diverse inputs. Our results show that, contrary to previous beliefs, effective adversarial suffixes do exist against SOTA alignment-based defenses, that these can be found by existing attack methods when adversaries exploit alignment knowledge, and that even universal suffixes exist. Taken together, our results highlight the brittleness of current alignment-based methods and the need to consider stronger threat models when testing the safety of LLMs.
Related papers
- Advancing Jailbreak Strategies: A Hybrid Approach to Exploiting LLM Vulnerabilities and Bypassing Modern Defenses [4.706534644850809]
Two primary inference-phase threats are token-level and prompt-level jailbreaks.<n>We propose two hybrid approaches that integrate token- and prompt-level techniques to enhance jailbreak effectiveness across diverse PTLMs.
arXiv Detail & Related papers (2025-06-27T07:26:33Z) - Benchmarking Misuse Mitigation Against Covert Adversaries [80.74502950627736]
Existing language model safety evaluations focus on overt attacks and low-stakes tasks.<n>We develop Benchmarks for Stateful Defenses (BSD), a data generation pipeline that automates evaluations of covert attacks and corresponding defenses.<n>Our evaluations indicate that decomposition attacks are effective misuse enablers, and highlight stateful defenses as a countermeasure.
arXiv Detail & Related papers (2025-06-06T17:33:33Z) - Mind the Gap: Detecting Black-box Adversarial Attacks in the Making through Query Update Analysis [3.795071937009966]
Adrial attacks can jeopardize the integrity of Machine Learning (ML) models.<n>We propose a framework that detects if an adversarial noise instance is being generated.<n>We evaluate our approach against 8 state-of-the-art attacks, including adaptive attacks.
arXiv Detail & Related papers (2025-03-04T20:25:12Z) - Attack-in-the-Chain: Bootstrapping Large Language Models for Attacks Against Black-box Neural Ranking Models [111.58315434849047]
We introduce a novel ranking attack framework named Attack-in-the-Chain.<n>It tracks interactions between large language models (LLMs) and Neural ranking models (NRMs) based on chain-of-thought.<n> Empirical results on two web search benchmarks show the effectiveness of our method.
arXiv Detail & Related papers (2024-12-25T04:03:09Z) - Enhancing Adversarial Attacks through Chain of Thought [0.0]
gradient-based adversarial attacks are particularly effective against aligned large language models (LLMs)
This paper proposes enhancing the universality of adversarial attacks by integrating CoT prompts with the greedy coordinate gradient (GCG) technique.
arXiv Detail & Related papers (2024-10-29T06:54:00Z) - AutoJailbreak: Exploring Jailbreak Attacks and Defenses through a Dependency Lens [83.08119913279488]
We present a systematic analysis of the dependency relationships in jailbreak attack and defense techniques.
We propose three comprehensive, automated, and logical frameworks.
We show that the proposed ensemble jailbreak attack and defense framework significantly outperforms existing research.
arXiv Detail & Related papers (2024-06-06T07:24:41Z) - Defending Large Language Models against Jailbreak Attacks via Semantic
Smoothing [107.97160023681184]
Aligned large language models (LLMs) are vulnerable to jailbreaking attacks.
We propose SEMANTICSMOOTH, a smoothing-based defense that aggregates predictions of semantically transformed copies of a given input prompt.
arXiv Detail & Related papers (2024-02-25T20:36:03Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
We develop a guided mechanism to avoid local minima during attack optimization, leading to a novel attack dubbed Guided Projected Gradient Attack (G-PGA)
Our modified attack does not require random restarts, large number of attack iterations or search for an optimal step-size.
More than an effective attack, G-PGA can be used as a diagnostic tool to reveal elusive robustness due to gradient masking in adversarial defenses.
arXiv Detail & Related papers (2022-12-30T18:45:23Z) - Understanding the Vulnerability of Skeleton-based Human Activity Recognition via Black-box Attack [53.032801921915436]
Human Activity Recognition (HAR) has been employed in a wide range of applications, e.g. self-driving cars.
Recently, the robustness of skeleton-based HAR methods have been questioned due to their vulnerability to adversarial attacks.
We show such threats exist, even when the attacker only has access to the input/output of the model.
We propose the very first black-box adversarial attack approach in skeleton-based HAR called BASAR.
arXiv Detail & Related papers (2022-11-21T09:51:28Z) - Scale-Invariant Adversarial Attack for Evaluating and Enhancing
Adversarial Defenses [22.531976474053057]
Projected Gradient Descent (PGD) attack has been demonstrated to be one of the most successful adversarial attacks.
We propose Scale-Invariant Adversarial Attack (SI-PGD), which utilizes the angle between the features in the penultimate layer and the weights in the softmax layer to guide the generation of adversaries.
arXiv Detail & Related papers (2022-01-29T08:40:53Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.