ToxicTone: A Mandarin Audio Dataset Annotated for Toxicity and Toxic Utterance Tonality
- URL: http://arxiv.org/abs/2505.15773v1
- Date: Wed, 21 May 2025 17:25:27 GMT
- Title: ToxicTone: A Mandarin Audio Dataset Annotated for Toxicity and Toxic Utterance Tonality
- Authors: Yu-Xiang Luo, Yi-Cheng Lin, Ming-To Chuang, Jia-Hung Chen, I-Ning Tsai, Pei Xing Kiew, Yueh-Hsuan Huang, Chien-Feng Liu, Yu-Chen Chen, Bo-Han Feng, Wenze Ren, Hung-yi Lee,
- Abstract summary: ToxicTone is the largest public dataset of its kind.<n>Our data is sourced from diverse real-world audio and organized into 13 topical categories.<n>We propose a multimodal detection framework that integrates acoustic, linguistic, and emotional features.
- Score: 35.517662288248225
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Despite extensive research on toxic speech detection in text, a critical gap remains in handling spoken Mandarin audio. The lack of annotated datasets that capture the unique prosodic cues and culturally specific expressions in Mandarin leaves spoken toxicity underexplored. To address this, we introduce ToxicTone -- the largest public dataset of its kind -- featuring detailed annotations that distinguish both forms of toxicity (e.g., profanity, bullying) and sources of toxicity (e.g., anger, sarcasm, dismissiveness). Our data, sourced from diverse real-world audio and organized into 13 topical categories, mirrors authentic communication scenarios. We also propose a multimodal detection framework that integrates acoustic, linguistic, and emotional features using state-of-the-art speech and emotion encoders. Extensive experiments show our approach outperforms text-only and baseline models, underscoring the essential role of speech-specific cues in revealing hidden toxic expressions.
Related papers
- Chinese Toxic Language Mitigation via Sentiment Polarity Consistent Rewrites [39.3555146467512]
ToxiRewriteCN is the first Chinese dataset explicitly designed to preserve sentiment polarity.<n>It comprises 1,556 carefully annotated triplets, each containing a toxic sentence, a sentiment-aligned non-toxic rewrite, and labeled toxic spans.<n>It covers five real-world scenarios: standard expressions, emoji-induced and homophonic toxicity, as well as single-turn and multi-turn dialogues.
arXiv Detail & Related papers (2025-05-21T09:27:18Z) - Dynamics of Toxicity in Political Podcasts [4.5621281512257434]
Toxicity in digital media poses significant challenges, yet little attention has been given to its dynamics within the rapidly growing medium of podcasts.<n>This paper addresses this gap by analyzing political podcast data to study the emergence and propagation of toxicity.<n>We systematically examine toxic discourse in over 30 popular political podcasts in the United States.
arXiv Detail & Related papers (2025-01-22T04:58:50Z) - Enhancing Multilingual Voice Toxicity Detection with Speech-Text Alignment [4.2936749846785345]
Toxicity classification for voice heavily relies on semantic content of speech.
We propose a novel framework that utilizes cross-modal learning to integrate the semantic embedding of text into a multilabel speech toxicity classifier.
arXiv Detail & Related papers (2024-06-14T17:56:53Z) - Comprehensive Assessment of Toxicity in ChatGPT [49.71090497696024]
We evaluate the toxicity in ChatGPT by utilizing instruction-tuning datasets.
prompts in creative writing tasks can be 2x more likely to elicit toxic responses.
Certain deliberately toxic prompts, designed in earlier studies, no longer yield harmful responses.
arXiv Detail & Related papers (2023-11-03T14:37:53Z) - Facilitating Fine-grained Detection of Chinese Toxic Language:
Hierarchical Taxonomy, Resources, and Benchmarks [18.44630180661091]
Existing datasets lack fine-grained annotation of toxic types and expressions.
It is crucial to introduce lexical knowledge to detect the toxicity of posts.
In this paper, we facilitate the fine-grained detection of Chinese toxic language.
arXiv Detail & Related papers (2023-05-08T03:50:38Z) - Annotators with Attitudes: How Annotator Beliefs And Identities Bias
Toxic Language Detection [75.54119209776894]
We investigate the effect of annotator identities (who) and beliefs (why) on toxic language annotations.
We consider posts with three characteristics: anti-Black language, African American English dialect, and vulgarity.
Our results show strong associations between annotator identity and beliefs and their ratings of toxicity.
arXiv Detail & Related papers (2021-11-15T18:58:20Z) - Speech Toxicity Analysis: A New Spoken Language Processing Task [32.297717021285344]
Toxic speech, also known as hate speech, is regarded as one of the crucial issues plaguing online social media today.
We propose a new Spoken Language Processing task of detecting toxicity from spoken speech.
We introduce DeToxy, the first publicly available toxicity annotated dataset for English speech, sourced from various openly available speech databases.
arXiv Detail & Related papers (2021-10-14T17:51:04Z) - Mitigating Biases in Toxic Language Detection through Invariant
Rationalization [70.36701068616367]
biases toward some attributes, including gender, race, and dialect, exist in most training datasets for toxicity detection.
We propose to use invariant rationalization (InvRat), a game-theoretic framework consisting of a rationale generator and a predictor, to rule out the spurious correlation of certain syntactic patterns.
Our method yields lower false positive rate in both lexical and dialectal attributes than previous debiasing methods.
arXiv Detail & Related papers (2021-06-14T08:49:52Z) - Challenges in Automated Debiasing for Toxic Language Detection [81.04406231100323]
Biased associations have been a challenge in the development of classifiers for detecting toxic language.
We investigate recently introduced debiasing methods for text classification datasets and models, as applied to toxic language detection.
Our focus is on lexical (e.g., swear words, slurs, identity mentions) and dialectal markers (specifically African American English)
arXiv Detail & Related papers (2021-01-29T22:03:17Z) - RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language
Models [93.151822563361]
Pretrained neural language models (LMs) are prone to generating racist, sexist, or otherwise toxic language which hinders their safe deployment.
We investigate the extent to which pretrained LMs can be prompted to generate toxic language, and the effectiveness of controllable text generation algorithms at preventing such toxic degeneration.
arXiv Detail & Related papers (2020-09-24T03:17:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.