dKV-Cache: The Cache for Diffusion Language Models
- URL: http://arxiv.org/abs/2505.15781v1
- Date: Wed, 21 May 2025 17:32:10 GMT
- Title: dKV-Cache: The Cache for Diffusion Language Models
- Authors: Xinyin Ma, Runpeng Yu, Gongfan Fang, Xinchao Wang,
- Abstract summary: Diffusion Language Models (DLMs) have been seen as a promising competitor for autoregressive language models.<n>We propose a KV-cache-like mechanism, delayed KV-Cache, for the denoising process of DLMs.<n>Our approach is motivated by the observation that different tokens have distinct representation dynamics throughout the diffusion process.
- Score: 53.85291644298835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion Language Models (DLMs) have been seen as a promising competitor for autoregressive language models. However, diffusion language models have long been constrained by slow inference. A core challenge is that their non-autoregressive architecture and bidirectional attention preclude the key-value cache that accelerates decoding. We address this bottleneck by proposing a KV-cache-like mechanism, delayed KV-Cache, for the denoising process of DLMs. Our approach is motivated by the observation that different tokens have distinct representation dynamics throughout the diffusion process. Accordingly, we propose a delayed and conditioned caching strategy for key and value states. We design two complementary variants to cache key and value step-by-step: (1) dKV-Cache-Decode, which provides almost lossless acceleration, and even improves performance on long sequences, suggesting that existing DLMs may under-utilise contextual information during inference. (2) dKV-Cache-Greedy, which has aggressive caching with reduced lifespan, achieving higher speed-ups with quadratic time complexity at the cost of some performance degradation. dKV-Cache, in final, achieves from 2-10x speedup in inference, largely narrowing the gap between ARs and DLMs. We evaluate our dKV-Cache on several benchmarks, delivering acceleration across general language understanding, mathematical, and code-generation benchmarks. Experiments demonstrate that cache can also be used in DLMs, even in a training-free manner from current DLMs.
Related papers
- LaCache: Ladder-Shaped KV Caching for Efficient Long-Context Modeling of Large Language Models [52.56008278458534]
LaCache is a training-free method for efficient and accurate generative inference of Large Language Models.<n>LaCache enables LLMs to address both of the critical challenges in long-range modeling: robust long-range capabilities and continuous generation without running out-of-memory.
arXiv Detail & Related papers (2025-07-14T19:09:57Z) - QuantSpec: Self-Speculative Decoding with Hierarchical Quantized KV Cache [67.84112700032007]
Large Language Models (LLMs) are increasingly being deployed on edge devices for long-context settings.<n>In these scenarios, the Key-Value ( KV) cache is the primary bottleneck in terms of both GPU memory and latency.<n>We propose a novel self-speculative decoding framework, QuantSpec, where the draft model shares the architecture of the target model but employs a hierarchical 4-bit quantized KV cache and 4-bit quantized weights for acceleration.
arXiv Detail & Related papers (2025-02-05T20:43:48Z) - VL-Cache: Sparsity and Modality-Aware KV Cache Compression for Vision-Language Model Inference Acceleration [7.463830743649754]
Vision-Language Models (VLMs) have demonstrated impressive performance across a versatile set of tasks.
Key-Value (KV) cache encodes long visual contexts, such as images or videos.
Existing KV cache compression methods are effective for Large Language Models (LLMs)
We propose a novel KV cache compression recipe tailored for accelerating VLM inference.
arXiv Detail & Related papers (2024-10-29T20:04:34Z) - FasterCache: Training-Free Video Diffusion Model Acceleration with High Quality [58.80996741843102]
FasterCache is a training-free strategy designed to accelerate the inference of video diffusion models with high-quality generation.<n>We show that FasterCache can significantly accelerate video generation while keeping video quality comparable to the baseline.
arXiv Detail & Related papers (2024-10-25T07:24:38Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications.<n>This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference.<n>We propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels.
arXiv Detail & Related papers (2024-07-30T17:59:08Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
We introduce Elastic Cache, a novel strategy for efficient deployment of instruction-following large vision-language models.
We propose an importance-driven cache merging strategy to prune redundancy caches.
For instruction encoding, we utilize the frequency to evaluate the importance of caches.
Results on a range of LVLMs demonstrate that Elastic Cache not only boosts efficiency but also notably outperforms existing pruning methods in language generation.
arXiv Detail & Related papers (2024-07-25T15:29:05Z) - Efficient LLM Inference with Kcache [3.945956673130761]
Large Language Models (LLMs) have had a profound impact on AI applications.
KV Cache technology is one of the most widely used techniques in the industry.
We propose a novel KCache technique to alleviate the memory bottleneck issue during the LLMs inference process.
arXiv Detail & Related papers (2024-04-28T03:11:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.