Quantum-Evolutionary Neural Networks for Multi-Agent Federated Learning
- URL: http://arxiv.org/abs/2505.15836v1
- Date: Fri, 16 May 2025 20:51:37 GMT
- Title: Quantum-Evolutionary Neural Networks for Multi-Agent Federated Learning
- Authors: Aarav Lala, Kalyan Cherukuri,
- Abstract summary: This paper introduces a novel framework combining quantum-inspired neural networks with evolutionary algorithms to optimize real-time decision-making in multi-agent systems.<n>The framework is designed to allow agents to adapt in real-time to their environments, optimizing decision-making processes for applications in areas such as autonomous systems, smart cities, and healthcare.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As artificial intelligence continues to drive innovation in complex, decentralized environments, the need for scalable, adaptive, and privacy-preserving decision-making systems has become critical. This paper introduces a novel framework combining quantum-inspired neural networks with evolutionary algorithms to optimize real-time decision-making in multi-agent systems (MAS). The proposed Quantum-Evolutionary Neural Network (QE-NN) leverages quantum computing principles -- such as quantum superposition and entanglement -- to enhance learning speed and decision accuracy, while integrating evolutionary optimization to continually refine agent behaviors in dynamic, uncertain environments. By utilizing federated learning, QE-NN ensures privacy preservation, enabling decentralized agents to collaborate without sharing sensitive data. The framework is designed to allow agents to adapt in real-time to their environments, optimizing decision-making processes for applications in areas such as autonomous systems, smart cities, and healthcare. This research represents a breakthrough in merging quantum computing, evolutionary optimization, and privacy-preserving techniques to solve complex problems in multi-agent decision-making systems, pushing the boundaries of AI in real-world, privacy-sensitive applications.
Related papers
- Next-Generation Quantum Neural Networks: Enhancing Efficiency, Security, and Privacy [3.9554540293311864]
This paper addresses key challenges in developing reliable and secure Quantum Neural Networks (QNNs) in the Noisy Intermediate-Scale Quantum (NISQ) era.<n>We present an integrated framework that leverages and combines existing approaches to enhance QNN efficiency, security, and privacy.
arXiv Detail & Related papers (2025-07-28T05:43:02Z) - AI Flow: Perspectives, Scenarios, and Approaches [51.38621621775711]
We introduce AI Flow, a framework that integrates cutting-edge IT and CT advancements.<n>First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters.<n>Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features.<n>Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow.
arXiv Detail & Related papers (2025-06-14T12:43:07Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [59.52058740470727]
Edge-cloud collaborative computing (ECCC) has emerged as a pivotal paradigm for addressing the computational demands of modern intelligent applications.<n>Recent advancements in AI, particularly deep learning and large language models (LLMs), have dramatically enhanced the capabilities of these distributed systems.<n>This survey provides a structured tutorial on fundamental architectures, enabling technologies, and emerging applications.
arXiv Detail & Related papers (2025-05-03T13:55:38Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [133.45145180645537]
The advent of large language models (LLMs) has catalyzed a transformative shift in artificial intelligence.<n>As these agents increasingly drive AI research and practical applications, their design, evaluation, and continuous improvement present intricate, multifaceted challenges.<n>This survey provides a comprehensive overview, framing intelligent agents within a modular, brain-inspired architecture.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - FL-QDSNNs: Federated Learning with Quantum Dynamic Spiking Neural Networks [4.635820333232683]
This paper introduces the Federated Learning-Quantum Dynamic Spiking Neural Networks (FL-QDSNNs) framework.<n>Central to our framework is a novel dynamic threshold mechanism for activating quantum gates in Quantum Spiking Neural Networks (QSNNs)<n>Our FL-QDSNNs framework has demonstrated superior accuracies-up to 94% on the Iris dataset and markedly outperforms existing Quantum Federated Learning (QFL) approaches.
arXiv Detail & Related papers (2024-12-03T09:08:33Z) - Transforming the Hybrid Cloud for Emerging AI Workloads [82.21522417363666]
This white paper envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads.<n>The proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness.<n>This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms.
arXiv Detail & Related papers (2024-11-20T11:57:43Z) - Quantum Computing and Neuromorphic Computing for Safe, Reliable, and explainable Multi-Agent Reinforcement Learning: Optimal Control in Autonomous Robotics [0.0]
This paper investigates the utilization of Quantum Computing and Neuromorphic Computing for Safe, Reliable, and Explainable Multi_Agent Reinforcement Learning (MARL)
The objective was to address the challenges of optimizing the behavior of autonomous agents while ensuring safety, reliability, and explainability.
arXiv Detail & Related papers (2024-07-29T15:43:30Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Dynamic Inhomogeneous Quantum Resource Scheduling with Reinforcement Learning [17.229068960497273]
A central challenge in quantum information science and technology is achieving real-time estimation and feedforward control of quantum systems.
We introduce a new framework utilizing a Transformer model that emphasizes self-attention mechanisms for pairs of qubits.
Our method significantly improves the performance of quantum systems, achieving more than a 3$times$ improvement over rule-based agents.
arXiv Detail & Related papers (2024-05-25T23:39:35Z) - Generative AI-enabled Quantum Computing Networks and Intelligent
Resource Allocation [80.78352800340032]
Quantum computing networks execute large-scale generative AI computation tasks and advanced quantum algorithms.
efficient resource allocation in quantum computing networks is a critical challenge due to qubit variability and network complexity.
We introduce state-of-the-art reinforcement learning (RL) algorithms, from generative learning to quantum machine learning for optimal quantum resource allocation.
arXiv Detail & Related papers (2024-01-13T17:16:38Z) - Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking
Neural networks: from Algorithms to Technology [11.479629320025673]
spiking neural networks (SNNs) have become an attractive alternative to deep neural networks for a broad range of signal processing applications.
We describe advances in algorithmic and optimization innovations to efficiently train and scale low-latency, and energy-efficient SNNs.
We discuss the potential path forward for research in building deployable SNN systems.
arXiv Detail & Related papers (2023-12-02T19:47:00Z) - SpikingJelly: An open-source machine learning infrastructure platform
for spike-based intelligence [51.6943465041708]
Spiking neural networks (SNNs) aim to realize brain-inspired intelligence on neuromorphic chips with high energy efficiency.
We contribute a full-stack toolkit for pre-processing neuromorphic datasets, building deep SNNs, optimizing their parameters, and deploying SNNs on neuromorphic chips.
arXiv Detail & Related papers (2023-10-25T13:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.