Quantum Computing and Neuromorphic Computing for Safe, Reliable, and explainable Multi-Agent Reinforcement Learning: Optimal Control in Autonomous Robotics
- URL: http://arxiv.org/abs/2408.03884v1
- Date: Mon, 29 Jul 2024 15:43:30 GMT
- Title: Quantum Computing and Neuromorphic Computing for Safe, Reliable, and explainable Multi-Agent Reinforcement Learning: Optimal Control in Autonomous Robotics
- Authors: Mazyar Taghavi,
- Abstract summary: This paper investigates the utilization of Quantum Computing and Neuromorphic Computing for Safe, Reliable, and Explainable Multi_Agent Reinforcement Learning (MARL)
The objective was to address the challenges of optimizing the behavior of autonomous agents while ensuring safety, reliability, and explainability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the utilization of Quantum Computing and Neuromorphic Computing for Safe, Reliable, and Explainable Multi_Agent Reinforcement Learning (MARL) in the context of optimal control in autonomous robotics. The objective was to address the challenges of optimizing the behavior of autonomous agents while ensuring safety, reliability, and explainability. Quantum Computing techniques, including Quantum Approximate Optimization Algorithm (QAOA), were employed to efficiently explore large solution spaces and find approximate solutions to complex MARL problems. Neuromorphic Computing, inspired by the architecture of the human brain, provided parallel and distributed processing capabilities, which were leveraged to develop intelligent and adaptive systems. The combination of these technologies held the potential to enhance the safety, reliability, and explainability of MARL in autonomous robotics. This research contributed to the advancement of autonomous robotics by exploring cutting-edge technologies and their applications in multi-agent systems. Codes and data are available.
Related papers
- Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
We propose a synergistic methodology to concurrently optimize perovskite memristor fabrication and develop robust analog DNNs.
We develop "BayesMulti", a training strategy utilizing BO-guided noise injection to improve the resistance of analog DNNs to memristor imperfections.
Our integrated approach enables use of analog computing in much deeper and wider networks, achieving up to 100-fold improvements.
arXiv Detail & Related papers (2024-12-03T19:20:08Z) - Transforming the Hybrid Cloud for Emerging AI Workloads [81.15269563290326]
This white paper envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads.
The proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness.
This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms.
arXiv Detail & Related papers (2024-11-20T11:57:43Z) - Rapid and Automated Alloy Design with Graph Neural Network-Powered LLM-Driven Multi-Agent Systems [0.0]
A multi-agent AI model is used to automate the discovery of new metallic alloys.
We focus on the NbMoTa family of body-centered cubic (bcc) alloys, modeled using an ML-based interatomic potential.
By synergizing the predictive power of GNNs with the dynamic collaboration of LLM-based agents, the system autonomously navigates vast alloy design spaces.
arXiv Detail & Related papers (2024-10-17T17:06:26Z) - Multi-Agent Reinforcement Learning for Autonomous Driving: A Survey [14.73689900685646]
Reinforcement Learning (RL) is a potent tool for sequential decision-making and has achieved performance surpassing human capabilities.
As the extension of RL in the multi-agent system domain, multi-agent RL (MARL) not only need to learn the control policy but also requires consideration regarding interactions with all other agents in the environment.
Simulators are crucial to obtain realistic data, which is the fundamentals of RL.
arXiv Detail & Related papers (2024-08-19T03:31:20Z) - Embodied Neuromorphic Artificial Intelligence for Robotics: Perspectives, Challenges, and Research Development Stack [7.253801704452419]
Recent advances in neuromorphic computing with Spiking Neural Networks (SNN) have demonstrated the potential to enable the embodied intelligence for robotics.
This paper will discuss how we can enable embodied neuromorphic AI for robotic systems through our perspectives.
arXiv Detail & Related papers (2024-04-04T09:52:22Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Machine Learning Quantum Systems with Magnetic p-bits [0.0]
The slowing down of Moore's Law has led to a crisis as the computing workloads of Artificial Intelligence (AI) algorithms continue skyrocketing.
There is an urgent need for scalable and energy-efficient hardware catering to the unique requirements of AI algorithms and applications.
Probability computing with p-bits emerged as a scalable, domain-specific, and energy-efficient computing paradigm.
arXiv Detail & Related papers (2023-10-10T14:54:57Z) - A Survey on Brain-Inspired Deep Learning via Predictive Coding [85.93245078403875]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
This paper presents a unified model-based reinforcement learning framework that bridges active exploration and uncertainty-aware deployment.
The two opposing tasks of exploration and deployment are optimized through state-of-the-art sampling-based MPC.
We conduct experiments on both autonomous vehicles and wheeled robots, showing promising results for both exploration and deployment.
arXiv Detail & Related papers (2023-05-20T17:20:12Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
We propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC)
We design an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards.
We show that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.
arXiv Detail & Related papers (2022-09-19T16:49:32Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes.
We elaborate on the utilization of a Genetic Algorithm and Neural Network to propose an intelligent feature selection algorithm.
arXiv Detail & Related papers (2020-08-29T14:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.