論文の概要: Advancing Tabular Stroke Modelling Through a Novel Hybrid Architecture and Feature-Selection Synergy
- arxiv url: http://arxiv.org/abs/2505.15844v1
- Date: Sun, 18 May 2025 21:46:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:47.803774
- Title: Advancing Tabular Stroke Modelling Through a Novel Hybrid Architecture and Feature-Selection Synergy
- Title(参考訳): 新たなハイブリッドアーキテクチャと特徴選択相乗効果による語彙ストロークモデルの改良
- Authors: Yousuf Islam, Md. Jalal Uddin Chowdhury, Sumon Chandra Das,
- Abstract要約: 本研究は、ストロークを予測するように設計されたデータ駆動型、解釈可能な機械学習フレームワークを開発し、検証する。
定期的に収集された人口統計、生活習慣、臨床変数は4,981件の公的なコホートから得られた。
提案したモデルでは精度97.2%、F1スコア97.15%が達成され、先行する個人モデルと比較して大幅に向上した。
- 参考スコア(独自算出の注目度): 0.9999629695552196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain stroke remains one of the principal causes of death and disability worldwide, yet most tabular-data prediction models still hover below the 95% accuracy threshold, limiting real-world utility. Addressing this gap, the present work develops and validates a completely data-driven and interpretable machine-learning framework designed to predict strokes using ten routinely gathered demographic, lifestyle, and clinical variables sourced from a public cohort of 4,981 records. We employ a detailed exploratory data analysis (EDA) to understand the dataset's structure and distribution, followed by rigorous data preprocessing, including handling missing values, outlier removal, and class imbalance correction using Synthetic Minority Over-sampling Technique (SMOTE). To streamline feature selection, point-biserial correlation and random-forest Gini importance were utilized, and ten varied algorithms-encompassing tree ensembles, boosting, kernel methods, and a multilayer neural network-were optimized using stratified five-fold cross-validation. Their predictions based on probabilities helped us build the proposed model, which included Random Forest, XGBoost, LightGBM, and a support-vector classifier, with logistic regression acting as a meta-learner. The proposed model achieved an accuracy rate of 97.2% and an F1-score of 97.15%, indicating a significant enhancement compared to the leading individual model, LightGBM, which had an accuracy of 91.4%. Our study's findings indicate that rigorous preprocessing, coupled with a diverse hybrid model, can convert low-cost tabular data into a nearly clinical-grade stroke-risk assessment tool.
- Abstract(参考訳): 脳卒中は、世界中で死と障害の主な原因の1つだが、ほとんどの表型データ予測モデルは、実際の実用性を制限する95%の精度閾値を下回っている。
このギャップに対処するため,本研究では,4,981レコードの公的なコホートから得られた10種類の人口動態,ライフスタイル,臨床変数を用いて,脳卒中を予測するための,完全にデータ駆動で解釈可能な機械学習フレームワークを開発し,検証する。
我々はデータセットの構造と分布を理解するために詳細な探索データ分析(EDA)を採用し、続いて、不足値の処理、外乱除去、SMOTE(Synthetic Minority Over-Sampling Technique)を用いたクラス不均衡補正を含む厳密なデータ前処理を行った。
特徴選択の合理化には, ポイントビセル相関とランダムフォレスト・フォレスト・ジーニの重要度を利用し, 階層化された5次元クロスバリデーションを用いて, 10種類のアルゴリズムによるツリーアンサンブル, ブースティング, カーネル手法, 多層ニューラルネットワークを最適化した。
確率に基づく予測は、Random Forest、XGBoost、LightGBM、サポートベクター分類器などのモデルの構築に役立ち、ロジスティック回帰はメタラーナーとして機能する。
提案されたモデルでは精度97.2%、F1スコア97.15%が達成され、主要な個人モデルであるLightGBMと比較して91.4%の精度で大幅に向上した。
本研究は,多種多様なハイブリッドモデルと組み合わせた厳密な前処理により,低コストな表層データをほぼ臨床レベルの脳卒中リスク評価ツールに変換できることを示唆する。
関連論文リスト
- Efficient Brain Tumor Classification with Lightweight CNN Architecture: A Novel Approach [0.0]
MRI画像を用いた脳腫瘍の分類は、早期かつ正確な検出が患者の予後に大きな影響を及ぼす医療診断において重要である。
近年のディープラーニング(DL)の進歩は将来性を示しているが、多くのモデルは精度と計算効率のバランスに苦慮している。
本稿では,分離可能な畳み込みと圧縮・励振ブロック(SEブロック)を統合した新しいモデルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-02-01T21:06:42Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - Predictive Analytics of Varieties of Potatoes [2.336821989135698]
本研究では, 育種試験におけるサツマイモクローンの選択プロセスの向上を目的とした, 機械学習アルゴリズムの適用について検討する。
本研究は, 高収率, 耐病性, 耐気候性ポテト品種を効率的に同定することの課題に対処する。
論文 参考訳(メタデータ) (2024-04-04T00:49:05Z) - An Evaluation of Machine Learning Approaches for Early Diagnosis of
Autism Spectrum Disorder [0.0]
自閉症スペクトラム障害(Autistic Spectrum disorder、ASD)は、社会的相互作用、コミュニケーション、反復活動の困難を特徴とする神経疾患である。
本研究は,診断プロセスの強化と自動化を目的として,多様な機械学習手法を用いて重要なASD特性を同定する。
論文 参考訳(メタデータ) (2023-09-20T21:23:37Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Inertial Hallucinations -- When Wearable Inertial Devices Start Seeing
Things [82.15959827765325]
環境支援型生活(AAL)のためのマルチモーダルセンサフュージョンの新しいアプローチを提案する。
我々は、標準マルチモーダルアプローチの2つの大きな欠点、限られた範囲のカバレッジ、信頼性の低下に対処する。
我々の新しいフレームワークは、三重項学習によるモダリティ幻覚の概念を融合させ、異なるモダリティを持つモデルを訓練し、推論時に欠落したセンサーに対処する。
論文 参考訳(メタデータ) (2022-07-14T10:04:18Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Survival Prediction of Children Undergoing Hematopoietic Stem Cell
Transplantation Using Different Machine Learning Classifiers by Performing
Chi-squared Test and Hyper-parameter Optimization: A Retrospective Analysis [4.067706269490143]
効率的な生存率分類モデルが包括的に提示される。
欠落した値を入力し、ダミー変数符号化を用いてデータを変換し、チ二乗特徴選択を用いて59個の特徴から11個の最も相関した特徴にデータセットを圧縮することにより、合成データセットを生成する。
この点に関しては、決定木(Decision Tree)、ランダムフォレスト(Random Forest)、ロジスティック回帰(Logistic Regression)、K-Nearest Neighbors(K-Nearest Neighbors)、グラディエントブースティング(Gradient Boosting)、Ada Boost(Ada Boost)、XG Boost(XG Boost)など、いくつかの教師付きML手法が訓練された。
論文 参考訳(メタデータ) (2022-01-22T08:01:22Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。