AutoData: A Multi-Agent System for Open Web Data Collection
- URL: http://arxiv.org/abs/2505.15859v1
- Date: Wed, 21 May 2025 04:32:35 GMT
- Title: AutoData: A Multi-Agent System for Open Web Data Collection
- Authors: Tianyi Ma, Yiyue Qian, Zheyuan Zhang, Zehong Wang, Xiaoye Qian, Feifan Bai, Yifan Ding, Xuwei Luo, Shinan Zhang, Keerthiram Murugesan, Chuxu Zhang, Yanfang Ye,
- Abstract summary: AutoData is a novel multi-agent system for Automated web Data collection that requires minimal human intervention.<n>Instruct2DS is a new benchmark dataset supporting live data collection from web sources across three domains: academic, finance, and sports.
- Score: 37.832257245199365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exponential growth of data-driven systems and AI technologies has intensified the demand for high-quality web-sourced datasets. While existing datasets have proven valuable, conventional web data collection approaches face significant limitations in terms of human effort and scalability. Current data-collecting solutions fall into two categories: wrapper-based methods that struggle with adaptability and reproducibility, and large language model (LLM)-based approaches that incur substantial computational and financial costs. To address these challenges, we propose AutoData, a novel multi-agent system for Automated web Data collection, that requires minimal human intervention, i.e., only necessitating a natural language instruction specifying the desired dataset. In addition, AutoData is designed with a robust multi-agent architecture, featuring a novel oriented message hypergraph coordinated by a central task manager, to efficiently organize agents across research and development squads. Besides, we introduce a novel hypergraph cache system to advance the multi-agent collaboration process that enables efficient automated data collection and mitigates the token cost issues prevalent in existing LLM-based systems. Moreover, we introduce Instruct2DS, a new benchmark dataset supporting live data collection from web sources across three domains: academic, finance, and sports. Comprehensive evaluations over Instruct2DS and three existing benchmark datasets demonstrate AutoData's superior performance compared to baseline methods. Case studies on challenging tasks such as picture book collection and paper extraction from surveys further validate its applicability. Our source code and dataset are available at https://github.com/GraphResearcher/AutoData.
Related papers
- AgenticData: An Agentic Data Analytics System for Heterogeneous Data [12.67277567222908]
AgenticData is an agentic data analytics system that allows users to pose natural language (NL) questions while autonomously analyzing data sources across multiple domains.<n>We propose a multi-agent collaboration strategy by utilizing a data profiling agent for discovering relevant data, a semantic cross-validation agent for iterative optimization based on feedback, and a smart memory agent for maintaining short-term context.
arXiv Detail & Related papers (2025-08-07T03:33:59Z) - Large Language Models and Synthetic Data for Monitoring Dataset Mentions in Research Papers [0.0]
This paper presents a machine learning framework that automates dataset mention detection across research domains.<n>We employ zero-shot extraction from research papers, an LLM-as-a-Judge for quality assessment, and a reasoning agent for refinement to generate a weakly supervised synthetic dataset.<n>At inference, a ModernBERT-based classifier efficiently filters dataset mentions, reducing computational overhead while maintaining high recall.
arXiv Detail & Related papers (2025-02-14T16:16:02Z) - Data-Juicer 2.0: Cloud-Scale Adaptive Data Processing for and with Foundation Models [64.28420991770382]
Data-Juicer 2.0 is a data processing system backed by data processing operators spanning text, image, video, and audio modalities.<n>It supports more critical tasks including data analysis, annotation, and foundation model post-training.<n>It has been widely adopted in diverse research fields and real-world products such as Alibaba Cloud PAI.
arXiv Detail & Related papers (2024-12-23T08:29:57Z) - AgentTrek: Agent Trajectory Synthesis via Guiding Replay with Web Tutorials [53.376263056033046]
Existing approaches rely on expensive human annotation, making them unsustainable at scale.<n>We propose AgentTrek, a scalable data synthesis pipeline that generates web agent trajectories by leveraging publicly available tutorials.<n>Our fully automated approach significantly reduces data collection costs, achieving a cost of just $0.55 per high-quality trajectory without human annotators.
arXiv Detail & Related papers (2024-12-12T18:59:27Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning [3.623224034411137]
offline multi-agent reinforcement learning (MARL) is an exciting direction of research that uses static datasets to find optimal control policies for multi-agent systems.
Though the field is by definition data-driven, efforts have thus far neglected data in their drive to achieve state-of-the-art results.
We show how the majority of works generate their own datasets without consistent methodology and provide sparse information about the characteristics of these datasets.
arXiv Detail & Related papers (2024-09-18T14:13:24Z) - Automatic Data Curation for Self-Supervised Learning: A Clustering-Based Approach [36.47860223750303]
We consider the problem of automatic curation of high-quality datasets for self-supervised pre-training.
We propose a clustering-based approach for building ones satisfying all these criteria.
Our method involves successive and hierarchical applications of $k$-means on a large and diverse data repository.
arXiv Detail & Related papers (2024-05-24T14:58:51Z) - STAR: Boosting Low-Resource Information Extraction by Structure-to-Text
Data Generation with Large Language Models [56.27786433792638]
STAR is a data generation method that leverages Large Language Models (LLMs) to synthesize data instances.
We design fine-grained step-by-step instructions to obtain the initial data instances.
Our experiments show that the data generated by STAR significantly improve the performance of low-resource event extraction and relation extraction tasks.
arXiv Detail & Related papers (2023-05-24T12:15:19Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
Person re-identification (re-ID) has gained more and more attention due to its widespread applications in video surveillance.
Unfortunately, the mainstream deep learning methods still need a large quantity of labeled data to train models.
In this paper, we develop a data collector to automatically generate synthetic re-ID samples in a computer game, and construct a data labeler to simultaneously annotate them.
arXiv Detail & Related papers (2021-09-12T15:51:41Z) - Data Augmentation for Abstractive Query-Focused Multi-Document
Summarization [129.96147867496205]
We present two QMDS training datasets, which we construct using two data augmentation methods.
These two datasets have complementary properties, i.e., QMDSCNN has real summaries but queries are simulated, while QMDSIR has real queries but simulated summaries.
We build end-to-end neural network models on the combined datasets that yield new state-of-the-art transfer results on DUC datasets.
arXiv Detail & Related papers (2021-03-02T16:57:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.