Mesh-free sparse identification of nonlinear dynamics
- URL: http://arxiv.org/abs/2505.16058v1
- Date: Wed, 21 May 2025 22:18:37 GMT
- Title: Mesh-free sparse identification of nonlinear dynamics
- Authors: Mars Liyao Gao, J. Nathan Kutz, Bernat Font,
- Abstract summary: We show that mesh-free SINDy is robust to high noise levels and limited data while remaining computationally efficient.<n>We demonstrate its effectiveness on a series of PDEs including the Burgers' equation, the heat equation, the Korteweg-De Vries equation and the 2D advection-diffusion equation.
- Score: 3.1484174280822845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying the governing equations of a dynamical system is one of the most important tasks for scientific modeling. However, this procedure often requires high-quality spatio-temporal data uniformly sampled on structured grids. In this paper, we propose mesh-free SINDy, a novel algorithm which leverages the power of neural network approximation as well as auto-differentiation to identify governing equations from arbitrary sensor placements and non-uniform temporal data sampling. We show that mesh-free SINDy is robust to high noise levels and limited data while remaining computationally efficient. In our implementation, the training procedure is straight-forward and nearly free of hyperparameter tuning, making mesh-free SINDy widely applicable to many scientific and engineering problems. In the experiments, we demonstrate its effectiveness on a series of PDEs including the Burgers' equation, the heat equation, the Korteweg-De Vries equation and the 2D advection-diffusion equation. We conduct detailed numerical experiments on all datasets, varying the noise levels and number of samples, and we also compare our approach to previous state-of-the-art methods. It is noteworthy that, even in high-noise and low-data scenarios, mesh-free SINDy demonstrates robust PDE discovery, achieving successful identification with up to 75% noise for the Burgers' equation using 5,000 samples and with as few as 100 samples and 1% noise. All of this is achieved within a training time of under one minute.
Related papers
- Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - Score-based Generative Models with Adaptive Momentum [40.84399531998246]
We propose an adaptive momentum sampling method to accelerate the transforming process.
We show that our method can produce more faithful images/graphs in small sampling steps with 2 to 5 times speed up.
arXiv Detail & Related papers (2024-05-22T15:20:27Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - Automating the Discovery of Partial Differential Equations in Dynamical Systems [0.0]
We present an extension to the ARGOS framework, ARGOS-RAL, which leverages sparse regression with the recurrent adaptive lasso to identify PDEs automatically.
We rigorously evaluate the performance of ARGOS-RAL in identifying canonical PDEs under various noise levels and sample sizes.
Our results show that ARGOS-RAL effectively and reliably identifies the underlying PDEs from data, outperforming the sequential threshold ridge regression method in most cases.
arXiv Detail & Related papers (2024-04-25T09:23:03Z) - Zero-shot Imputation with Foundation Inference Models for Dynamical Systems [5.549794481031468]
We offer a fresh perspective on the classical problem of imputing missing time series data, whose underlying dynamics are assumed to be determined by ODEs.<n>We propose a novel supervised learning framework for zero-shot time series imputation, through parametric functions satisfying some (hidden) ODEs.<n>We empirically demonstrate that one and the same (pretrained) recognition model can perform zero-shot imputation across 63 distinct time series with missing values.
arXiv Detail & Related papers (2024-02-12T11:48:54Z) - Iterated Denoising Energy Matching for Sampling from Boltzmann Densities [109.23137009609519]
Iterated Denoising Energy Matching (iDEM)
iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our matching objective.
We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5times$ faster.
arXiv Detail & Related papers (2024-02-09T01:11:23Z) - Parallel Sampling of Diffusion Models [76.3124029406809]
Diffusion models are powerful generative models but suffer from slow sampling.
We present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel.
arXiv Detail & Related papers (2023-05-25T17:59:42Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.<n>This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.<n>We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Pseudo Numerical Methods for Diffusion Models on Manifolds [77.40343577960712]
Denoising Diffusion Probabilistic Models (DDPMs) can generate high-quality samples such as image and audio samples.
DDPMs require hundreds to thousands of iterations to produce final samples.
We propose pseudo numerical methods for diffusion models (PNDMs)
PNDMs can generate higher quality synthetic images with only 50 steps compared with 1000-step DDIMs (20x speedup)
arXiv Detail & Related papers (2022-02-20T10:37:52Z) - Weak SINDy For Partial Differential Equations [0.0]
We extend our Weak SINDy (WSINDy) framework to the setting of partial differential equations (PDEs)
The elimination of pointwise derivative approximations via the weak form enables effective machine-precision recovery of model coefficients from noise-free data.
We demonstrate WSINDy's robustness, speed and accuracy on several challenging PDEs.
arXiv Detail & Related papers (2020-07-06T16:03:51Z) - A Data-Driven Approach for Discovering Stochastic Dynamical Systems with
Non-Gaussian Levy Noise [5.17900889163564]
We develop a new data-driven approach to extract governing laws from noisy data sets.
First, we establish a feasible theoretical framework, by expressing the drift coefficient, diffusion coefficient and jump measure.
We then design a numerical algorithm to compute the drift, diffusion coefficient and jump measure, and thus extract a governing equation with Gaussian and non-Gaussian noise.
arXiv Detail & Related papers (2020-05-07T21:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.