論文の概要: Towards Trustworthy Keylogger detection: A Comprehensive Analysis of Ensemble Techniques and Feature Selections through Explainable AI
- arxiv url: http://arxiv.org/abs/2505.16103v1
- Date: Thu, 22 May 2025 01:04:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:47.958986
- Title: Towards Trustworthy Keylogger detection: A Comprehensive Analysis of Ensemble Techniques and Feature Selections through Explainable AI
- Title(参考訳): 信頼できるキーロガー検出に向けて:説明可能なAIによるアンサンブル技術と特徴選択の包括的分析
- Authors: Monirul Islam Mahmud,
- Abstract要約: キーロガー検出は、タイピングと文字表示の遅延のような異常なシステム動作の監視を含む。
本研究では,従来の機械学習モデルを用いたキーロガー検出の包括的解析を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Keylogger detection involves monitoring for unusual system behaviors such as delays between typing and character display, analyzing network traffic patterns for data exfiltration. In this study, we provide a comprehensive analysis for keylogger detection with traditional machine learning models - SVC, Random Forest, Decision Tree, XGBoost, AdaBoost, Logistic Regression and Naive Bayes and advanced ensemble methods including Stacking, Blending and Voting. Moreover, feature selection approaches such as Information gain, Lasso L1 and Fisher Score are thoroughly assessed to improve predictive performance and lower computational complexity. The Keylogger Detection dataset from publicly available Kaggle website is used in this project. In addition to accuracy-based classification, this study implements the approach for model interpretation using Explainable AI (XAI) techniques namely SHAP (Global) and LIME (Local) to deliver finer explanations for how much each feature contributes in assisting or hindering the detection process. To evaluate the models result, we have used AUC score, sensitivity, Specificity, Accuracy and F1 score. The best performance was achieved by AdaBoost with 99.76% accuracy, F1 score of 0.99, 100% precision, 98.6% recall, 1.0 specificity and 0.99 of AUC that is near-perfect classification with Fisher Score.
- Abstract(参考訳): キーロガー検出は、タイピングと文字表示の遅延などの異常なシステム動作の監視、データ抽出のためのネットワークトラフィックパターンの分析を含む。
本研究では,従来の機械学習モデル – SVC,ランダムフォレスト,決定木,XGBoost,AdaBoost,ロジスティック回帰,ナイーブベイズ – によるキーロガー検出の包括的な解析と,スタックング,ブレンディング,投票などの高度なアンサンブル手法について述べる。
さらに,情報ゲイン,ラッソL1,フィッシャースコアなどの特徴選択手法を徹底的に評価し,予測性能の向上と計算複雑性の低減を図る。
このプロジェクトでは、公開のKaggle WebサイトにあるKeylogger Detectionデータセットが使用されている。
本研究は,精度に基づく分類に加えて,SHAP (Global) と LIME (Local) という,説明可能なAI (XAI) 技術を用いたモデル解釈のアプローチを実装し,各特徴が検出プロセスの補助や妨害にどの程度貢献するかを詳細に説明する。
評価には,AUCスコア,感度,特異性,精度,F1スコアを用いた。
AdaBoostは99.76%の精度、F1スコアは0.99、100%の精度、98.6%のリコール、1.0の特異度、0.99のAUCをフィッシャー・スコアとほぼ完璧な分類で達成した。
関連論文リスト
- A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
本稿では,統計的特徴選択と分類技術を統合し,欠陥検出精度を向上させるハイブリッドフレームワークを提案する。
工業画像から抽出した55個の特徴を統計的手法を用いて解析した。
これらの手法をフレキシブルな機械学習アプリケーションに統合することにより、検出精度を改善し、偽陽性や誤分類を減らす。
論文 参考訳(メタデータ) (2024-12-11T22:12:21Z) - Explainable AI for Comparative Analysis of Intrusion Detection Models [20.683181384051395]
本研究は,ネットワークトラフィックから侵入検出を行うために,各種機械学習モデルを二分分類および多クラス分類のタスクに解析する。
すべてのモデルをUNSW-NB15データセットで90%の精度でトレーニングしました。
また、Random Forestは正確さ、時間効率、堅牢性という点で最高のパフォーマンスを提供します。
論文 参考訳(メタデータ) (2024-06-14T03:11:01Z) - Ransomware detection using stacked autoencoder for feature selection [0.0]
この研究は、オートエンコーダの学習したウェイトとアクティベーションを慎重に分析し、ランサムウェアファミリーと他のマルウェアを区別するための重要な特徴を特定します。
提案手法はランサムウェア分類において, Extreme Gradient Boosting (XGBoost) アルゴリズムを上回り, 99%の精度を達成している。
論文 参考訳(メタデータ) (2024-02-17T17:31:48Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
クリックスルー率(CTR)予測は、ユーザーが商品をクリックする確率を予測することを目的としており、リコメンデーションシステムにおいてますます重要になっている。
近年,ユーザの行動からユーザの興味を自動的に抽出する深層学習モデルが大きな成功を収めている。
そこで我々は,メタラッパー(Meta-Wrapper)と呼ばれるラッパー手法の枠組みに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-28T03:28:15Z) - End-to-End Zero-Shot HOI Detection via Vision and Language Knowledge
Distillation [86.41437210485932]
我々は、ゼロショットHOI検出を前進させ、同時に見えないHOIと見えないHOIの両方を検出することを目指している。
本稿では,視覚言語による知識蒸留によるエンドツーエンドのゼロショットHOI検出フレームワークを提案する。
本手法は, 従来のSOTAを8.92%, 全体の10.18%で上回っている。
論文 参考訳(メタデータ) (2022-04-01T07:27:19Z) - Explainable AI Integrated Feature Selection for Landslide Susceptibility
Mapping using TreeSHAP [0.0]
データ駆動型アプローチによる地すべり感受性の早期予測は時間の要求である。
地すべりの感受性予測には,XgBoost,LR,KNN,SVM,Adaboostといった最先端の機械学習アルゴリズムを用いた。
XgBoostの最適化バージョンと機能低下の40パーセントは、一般的な評価基準で他のすべての分類器よりも優れています。
論文 参考訳(メタデータ) (2022-01-10T09:17:21Z) - Utilizing XAI technique to improve autoencoder based model for computer
network anomaly detection with shapley additive explanation(SHAP) [0.0]
機械学習(ML)とディープラーニング(DL)メソッドは、特にコンピュータネットワークセキュリティにおいて急速に採用されている。
MLとDLベースのモデルの透明性の欠如は、実装の大きな障害であり、ブラックボックスの性質から批判されている。
XAIは、これらのモデルの信頼性を向上させる上で、説明やアウトプットの解釈を通じて有望な分野である。
論文 参考訳(メタデータ) (2021-12-14T09:42:04Z) - A Survey of Machine Learning Algorithms for Detecting Ransomware
Encryption Activity [0.0]
ランサムウェアを検出するために訓練された機械学習技術について調査する。
この研究は、Taylorらによる、センサーベースの方法による暗号化アクティビティの識別の取り組みに基づいている。
ランダムフォレストモデルでは、93%の精度と92%のF1のスコアが生成され、センサーによる検出が、コードが完全に実行される前にゼロデイランサムウェア攻撃を検知する実行可能な選択肢であることを示している。
論文 参考訳(メタデータ) (2021-10-14T18:02:31Z) - Anomaly Detection in Cybersecurity: Unsupervised, Graph-Based and
Supervised Learning Methods in Adversarial Environments [63.942632088208505]
現在の運用環境に固有ののは、敵対的機械学習の実践である。
本研究では,教師なし学習とグラフに基づく異常検出の可能性を検討する。
我々は,教師付きモデルの訓練時に,現実的な対人訓練機構を組み込んで,対人環境における強力な分類性能を実現する。
論文 参考訳(メタデータ) (2021-05-14T10:05:10Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
ログ表現を学習するための分類法であるLogsyを提案する。
従来の方法と比較して,F1スコアの平均0.25の改善を示す。
論文 参考訳(メタデータ) (2020-08-21T07:26:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。