論文の概要: Beyond Early-Token Bias: Model-Specific and Language-Specific Position Effects in Multilingual LLMs
- arxiv url: http://arxiv.org/abs/2505.16134v2
- Date: Fri, 26 Sep 2025 15:21:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-29 16:35:18.85393
- Title: Beyond Early-Token Bias: Model-Specific and Language-Specific Position Effects in Multilingual LLMs
- Title(参考訳): 初期のバイアスを超えて:多言語LLMにおけるモデル特化および言語特化位置効果
- Authors: Mikhail Menschikov, Alexander Kharitonov, Maiia Kotyga, Vadim Porvatov, Anna Zhukovskaya, David Kagramanyan, Egor Shvetsov, Evgeny Burnaev,
- Abstract要約: 我々は,5言語(英語,ロシア語,ドイツ語,ヒンディー語,ベトナム語)にまたがる調査を行った。
位置バイアスが即時戦略とどのように相互作用し、出力エントロピーに影響を及ぼすかを検討する。
- 参考スコア(独自算出の注目度): 50.07451351559251
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) exhibit position bias - a systematic tendency to neglect information at specific context positions. However, the patterns of position bias behavior, depending on the language or model, remain unexplored. We present a multilingual study across five typologically distinct languages (English, Russian, German, Hindi, and Vietnamese) and five model architectures, examining how position bias interacts with prompt strategies and affects output entropy. Our key findings are: (1) Position bias is primarily model-driven, yet exhibits language-specific variations. For instance, Qwen2.5-7B-Instruct and DeepSeek 7B Chat consistently favors late positions, challenging established assumptions of a universal early-token bias in LLMs. (2) Explicitly instructing the model that "the context is relevant to the query" unexpectedly reduces accuracy across languages, undermining common prompt-engineering practices. (3) While the largest accuracy drop occurs when relevant information is placed in the middle of the context, this is not explicitly reflected by a corresponding peak in output entropy.
- Abstract(参考訳): 大規模言語モデル(LLM)は、特定の文脈位置で情報を無視する体系的な傾向である位置バイアスを示す。
しかし、位置バイアスのパターンは言語やモデルによってまだ解明されていない。
本稿では,5つの言語(英語,ロシア語,ドイツ語,ヒンディー語,ベトナム語)と5つのモデルアーキテクチャを多言語で比較し,位置バイアスが迅速な戦略とどのように相互作用し,出力エントロピーに影響を与えるかを検討する。
1) 位置バイアスは主にモデル駆動であるが、言語固有のバリエーションを示す。
例えば、Qwen2.5-7B-InstructとDeepSeek 7B Chatは、LSMにおける普遍的な早期バイアスの仮定に挑戦し、常に遅い位置を好んでいる。
2)「クエリに関連するコンテキスト」というモデルを明示的に指示すると、言語間の精度が予想外に低下し、一般的なプロンプトエンジニアリングの実践が損なわれる。
(3) 関連情報がコンテキストの中央に置かれると、最大の精度低下が発生するが、これは出力エントロピーの対応するピークによって明示的に反映されない。
関連論文リスト
- Delving into Multilingual Ethical Bias: The MSQAD with Statistical Hypothesis Tests for Large Language Models [7.480124826347168]
本稿では,世界規模で議論され,潜在的にセンシティブなトピックに対するLLMの倫理的バイアスの妥当性と比較について検討する。
我々は、Human Rights Watchから17のトピックに関するニュース記事を収集し、複数の言語で対応する回答とともに、社会的に敏感な質問を生成した。
我々は2つの統計的仮説テストを用いて、これらの応答のバイアスを言語やトピックにわたって精査した。
論文 参考訳(メタデータ) (2025-05-25T12:25:44Z) - Assessing Large Language Models in Agentic Multilingual National Bias [31.67058518564021]
推論に基づくレコメンデーションにおける言語間の格差はほとんど未解明のままである。
この研究は、このギャップに最初に対処する。
複数の言語にわたる意思決定タスクに対する応答を解析することにより、最先端のLLMにおける多言語バイアスについて検討する。
論文 参考訳(メタデータ) (2025-02-25T08:07:42Z) - Covert Bias: The Severity of Social Views' Unalignment in Language Models Towards Implicit and Explicit Opinion [0.40964539027092917]
過度なバイアスシナリオのエッジケースにおけるバイアスモデルを用いて、ビューに対するバイアスの重症度を評価する。
以上の結果から,暗黙的・明示的な意見の識別において,LLM 性能の相違が明らかとなり,反対意見の明示的な意見に対する偏見の傾向が一般的であった。
非整合モデルの直接的な不注意な反応は、決定性のさらなる洗練の必要性を示唆している。
論文 参考訳(メタデータ) (2024-08-15T15:23:00Z) - Eliminating Position Bias of Language Models: A Mechanistic Approach [119.34143323054143]
位置バイアスは現代言語モデル (LM) の一般的な問題であることが証明されている。
我々の力学解析は、ほぼ全ての最先端のLMで使われている2つのコンポーネント(因果的注意と相対的位置エンコーディング)に位置バイアスが関係している。
位置バイアスを排除することによって、LM-as-a-judge、検索強化QA、分子生成、数学推論など、下流タスクのパフォーマンスと信頼性が向上する。
論文 参考訳(メタデータ) (2024-07-01T09:06:57Z) - The Curious Case of Absolute Position Embeddings [65.13827063579728]
トランスフォーマー言語モデルは、位置情報を用いた単語順序の概念を符号化する。
自然言語では、絶対的な位置ではなく相対的な位置であり、APEがこのような情報を捉えることができる範囲は研究されていない。
我々は, APE を用いて訓練されたモデルが, 位置情報をシフトした文を入力した時点で, 位置情報に基づいて過度に訓練されていることを観察した。
論文 参考訳(メタデータ) (2022-10-23T00:00:04Z) - Revisiting the Uniform Information Density Hypothesis [44.277066511088634]
読み出し時間と受理可能性データを用いて,一様情報密度(UID)仮説について検討する。
受理性判定では,情報密度の非均一性が受理性低下の予測であることを示す。
論文 参考訳(メタデータ) (2021-09-23T20:41:47Z) - The Case for Translation-Invariant Self-Attention in Transformer-Based
Language Models [11.148662334602639]
既存の言語モデルの位置埋め込みを分析し、翻訳不変性の強い証拠を見出す。
本稿では,トークン間の相対的な位置を解釈可能な方法で記述する翻訳不変自己アテンション(TISA)を提案する。
論文 参考訳(メタデータ) (2021-06-03T15:56:26Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - Investigating Cross-Linguistic Adjective Ordering Tendencies with a
Latent-Variable Model [66.84264870118723]
本稿では,多言語形容詞順序付けを潜在変数モデルとして,初めて純粋コーパス駆動モデルを提案する。
我々は普遍的、言語横断的、階層的形容詞順序付け傾向の存在の強い確固たる証拠を提供する。
論文 参考訳(メタデータ) (2020-10-09T18:27:55Z) - Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer [101.58431011820755]
多言語埋め込みにおけるジェンダーバイアスとNLPアプリケーションの伝達学習への影響について検討する。
我々は、バイアス分析のための多言語データセットを作成し、多言語表現におけるバイアスの定量化方法をいくつか提案する。
論文 参考訳(メタデータ) (2020-05-02T04:34:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。